
HyperSpace: Data-Value Integrity for Securing Software

Jinwoo Yom

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Changwoo Min, Chair

David R. Raymond

Joseph G. Tront

Randolph C. Marchany

April 28, 2020

Blacksburg, Virginia

Keywords: Data Value Integrity, Value Invariant, Security Policy

Copyright 2020, Jinwoo Yom

HyperSpace: Data-Value Integrity for Securing Software

Jinwoo Yom

(ABSTRACT)

Most modern software attacks are rooted in memory corruption vulnerabilities. They redirect

security-sensitive data values (e.g., return address, function pointer, and heap metadata) to

an unintended value. Current state-of-the-art policies, such as Data-Flow Integrity (DFI) and

Control-Flow Integrity (CFI), are effective but often struggle to balance precision, generality,

and overhead.

In this thesis, we propose Data-Value Integrity (DVI), a new defense policy that enforces the

integrity of “data value” for security-sensitive control and non-control data. DVI breaks an

essential step of memory corruption based attacks by asserting the compromised security-

sensitive data value. To show the efficacy of DVI, we present HyperSpace, a prototype that

enforces DVI to provide four representative security mechanisms. These include Code Pointer

Separation (DVI-CPS) and Code Pointer Integrity (DVI-CPI) based on HyperSpace. We

evaluate HyperSpace with SPEC CPU2006 and real-world servers. We also test HyperSpace

against memory corruption based attacks, including three real-world exploits and six attacks

that bypass existing defenses. Our evaluation shows that HyperSpace successfully detects

all attacks and introduces low runtime performance and memory overhead: 0.9% and 6.2%

performance overhead for DVI-CPS and DVI-CPI, respectively, and overall approximately

15% memory overhead.

HyperSpace: Data-Value Integrity for Securing Software

Jinwoo Yom

(GENERAL AUDIENCE ABSTRACT)

Many modern attacks originate from memory corruption vulnerabilities. These attacks, such

as buffer overflow, allow an adversary to compromise a system by executing arbitrary code

or escalating their access privilege for malicious actions. Unfortunately, this is due to today’s

common programming languages such as C/C++ being especially prone to memory corrup-

tion. These languages build the foundation of our software stack thus, many applications

such as web browsers and database servers that are written using these vulnerable program-

ming languages inherit these shortcomings. There have been numerous security mechanisms

that are widely adopted to address this issue but they all fall short in providing complete

memory security. Since then, security researchers have proposed various solutions to mitigate

these ever-growing shortcomings of memory safety techniques. Nonetheless, these defense

techniques are either too narrow-scoped, incur high runtime overhead, or require significant

additional hardware resources. This results in them being unscalable for bigger applica-

tions or requiring it to be used in combination with other techniques to provide a stronger

security guarantee. This thesis presents Data Value Integrity (DVI), a new defense pol-

icy that enforces the integrity of “data value” for sensitive C/C++ data which includes,

function pointers, virtual function table pointers, and inline heap metadata. DVI can offer

wide-scoped security while being able to scale, making it a versatile and elegant solution to

address various memory corruption vulnerabilities. This thesis also introduces HyperSpace,

a prototype that enforces DVI. The evaluation shows that HyperSpace performs better than

state-of-the-art defense mechanisms while having less performance and memory overhead

and also providing stronger and more general security guarantees.

Dedication

To my parents and grandparents.

For their endless love and sacrifice.

iv

Acknowledgments

First and foremost, I am thankful for my amazing research advisor Dr.Changwoo Min, a

professor in The Bradley Department of Electrical and Computer Engineering at Virginia

Tech, for his continuous guidance on my Master’s thesis. His patience, kindness, and moti-

vation helped guide me through my research and this thesis. Dr.Min always kept his door

open and never hesitated to answer my questions regarding my research at any time of the

week. I could not have done this without his mentorship.

I thank Dr. David Raymond, Dr. Joseph G. Tront, Prof. Randy Marchany, and Dr.

Haining Wang for their service as my thesis committee members and also for their valuable

review and feedback on my thesis.

A very special gratitude goes out to our remote research collaborator Dr. Yeongjin Jang

from Oregon State University. His expertise in the field of computer security was an incred-

ible help towards the completion of my thesis.

I am grateful for my security teammates in Computer Systems, Memory, and Security

(COSMOSS) Lab. They made valuable contributions to my research and supported me

in my research endeavors.

Thank you to the rest of the COSMOSS lab members for all of the coffee, tea, snacks

and laughter along the way.

v

Last but not least, I thank my parents, grandparents, sister, extended family members,

friends, and my lovely parrots for providing me with support and encouragement. This

would not have been possible without them.

vi

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Background 6

2.1 State-Of-the-Art in Memory Corruption . 9

2.1.1 Related Attacks . 9

2.1.2 Relevant Memory Protection Features 11

3 Data Value Integrity 14

3.1 Value Invariant Property . 14

3.2 VTPtr in a C++ Object . 16

3.3 DVI Overview . 17

4 DVI as a Generic Exploit Mitigation 21

4.1 Protecting Control Data: a Function Pointer 21

4.2 Protecting Non-control Data: Authentication Status 23

4.3 Security Guarantee of DVI . 24

vii

4.4 Defense Advantages in DVI . 26

5 Threat Model and Assumptions 28

6 HyperSpace Design 29

7 Security Applications 33

7.1 Code Pointer Separation (DVI-CPS) . 34

7.2 VTable Protection in C++ (DVI-VTPtr) . 35

7.3 Code Pointer Integrity (DVI-CPI) . 36

7.4 Heap Metadata Protection . 36

8 Optimizations 38

8.1 Inlining DVI Functions (INLN) . 38

8.2 Excluding Objects in Safe Stack (SS) . 39

8.3 Runtime Checks to Reduce Permission Changes (RNT) 39

8.4 Coalescing Permission Changes within a Basic Block (CBB) 40

8.5 Coalescing Permission Changes within a Safe Function (CFN) 41

8.6 Optimizing Safe Memory Access (HGP) . 42

9 Implementation 44

10 Evaluation 46

viii

10.1 Security Experiments . 46

10.1.1 Real-World Exploits . 46

10.1.2 Synthesized Exploits . 47

10.2 Performance Evaluation . 48

10.2.1 Performance Overhead of SPEC CPU2006 48

10.2.2 Performance Overhead of Real-World Applications 51

10.3 Performance Analysis . 52

10.3.1 Impact of Performance Optimization 52

10.3.2 Analysis on Memory Consumption 54

11 Discussion & Future Work 56

12 Conclusion 58

Bibliography 59

ix

List of Figures

3.1 DVI primitives (left) and the state transition diagram (right) for

DVI protected memory. DVI primitives trigger state transitions for a

specified memory location. DVI manages the intended value of sensitive data

for integrity checking. Mismatching values of sensitive data or an illegal state

transition indicates a value integrity violation (dvi_assert). 15

3.2 Example vulnerable C code. Attackers can overwrite security-sensitive

data by exploiting memory corruption vulnerabilities (strcpy() at Line 16

or packet_read() at Line 30) to subvert control flow (arbitrary code execu-

tion at Line 18) or change program behavior (illicitly reach grant_access,

Line 37). In Data-Value Integrity (DVI), we directly check if the value of sen-

sitive data is corrupted without tracking control flow or data flow. Sensitive

data is first registered (dvi_register) and its value is stored in safe memory

(dvi_write, dvi_write_final) upon write. Its integrity is checked before use

(dvi_assert). Finally, its memory location is unregistered upon deallocation

(dvi_unregister). 19

6.1 HyperSpace memory layout. We re-purpose hardware segmentation of

x86 architecture for efficient access to HyperSpace. The safe memory region

is protected by Intel Memory Protection Keys (MPK). 30

6.2 Code for accessing safe memory and its state. 32

x

8.1 An example of before (top) and after (bottom) basic block level

coalescing optimization for permission changes in 400.perlbench to

reduce runtime overhead (Lines 24-29). 40

8.2 An example of before (top) and after (bottom) function level co-

alescing of permission changes in 400.perlbench to reduce runtime

overhead (Lines 37 and 54). 43

10.1 The performance overhead of SPEC CPU2006, NGINX web server,

and PostgreSQL database server relative to an unprotected baseline

build. Our three DVI protections are: heap metadata protection, CPS code

pointer and C++ VTPtr protection, and CPI protecting all sensitive pointers.

HyperSpace imposes negligible performance overhead of 0.9% and 6.2% for

DVI-CPS+VTPtr and DVI-CPI, respectively. 49

10.2 Impact of the performance optimization techniques described in

Chapter 8. (INLN: inlining DVI APIs; SS: safe stack; RNT: runtime permis-

sion check; CBB: basic block-level coalescing; CFN: function-level coalescing;

HGP: huge page). 53

10.3 Memory overhead of DVI-CPS+VTPtr and DVI-CPI on SPEC CPU2006.

HyperSpace imposes marginal overhead: average and median overhead of

DVI-CPI is 15.5% and 5.9%, respectively. 55

xi

List of Tables

9.1 Summary of lines of code for HyperSpace components. 45

xii

Chapter 1

Introduction

The foundation of most software stacks is written in unsafe languages such as C/C++. This

jeopardizes not only the security of programs written in those languages but also the security

of programs written in modern type-safe languages as they often utilize libraries written in

unsafe languages. This problem affects our common applications to be prone to memory

corruption vulnerabilities.

Most memory attacks modify the intended value of security-sensitive data. For example,

control data attacks exploit buffer overflows to overwrite code pointers. In most cases, these

targeted code pointers are return addresses [10, 11, 75, 78], function pointers [14, 21, 30, 36],

or virtual function table pointers in C++ [72, 95]. Meanwhile, non-control data attacks aim

to overwrite other security-sensitive data, such as heap metadata [6, 27, 28, 65, 76, 77, 93]

and security credentials. Furthermore, advanced control and non-control data attacks, such

as return-oriented programming (ROP) [75] and data-oriented programming (DOP) [43],

respectively, are powerful as they can construct arbitrary Turing-complete computations.

Memory-corruption Defense Landscape. In response, many defenses have been pro-

posed to thwart memory corruption-based attacks, however, they suffer from high runtime

overhead, can only protect control data, or are imprecise thus susceptible to attacks. Full

memory safety enforcement, such as [60, 73, 97], prevents all memory corruption as they en-

force spatial and temporal memory safety. However, these approaches fall short in practical-

ity due to their high runtime performance and memory overhead. For example, a state-of-the-

1

2 Chapter 1. Introduction

art system BOGO [97] has 60% runtime overhead and 36% memory overhead. Control-flow

integrity (CFI) [1, 12, 17, 24, 34, 39, 40, 44, 50, 54, 63, 64, 69, 71, 82, 86, 88, 89, 94, 96] pro-

vides control data protection by guaranteeing the integrity of expected control flow based on

the program’s control-flow graph (CFG). However, not only CFI fails to defend non-control

data attacks, but it also struggles to balance between precision and runtime overhead. Nu-

merous CFI proposals suffer from over-conservative precision in the form of large equivalence

classes (EC) [49], which are a set of indistinguishable code targets for each indirect trans-

fer. In this case, CFI cannot accurately detect illegally bent control transfer within a given

EC [14, 30, 72]. Recent work [44] attempts to address this inherent problem by enforcing a

unique code target (UCT) property (i.e., EC = 1). However, this technique requires back-

ground threads to process Intel PT packets, which consumes additional hardware resources

(e.g., dedicating an analysis CPU core) and scarifies scalability and ability to be widely

adopted. Code-pointer integrity (CPI) [53] protects all code pointers in a program. Similar

to CFI, CPI defends against control data attacks but neglects non-control data attacks. CPI

protects code pointers via isolation relying on information hiding, however, attacks against

information hiding [29, 37, 66] can break its security guarantee. Furthermore, CPI has high

memory overhead (105% on average) to keep track of metadata for all sensitive pointers.

Data-flow integrity (DFI) [15, 79, 80] prevents both control and non-control data. DFI en-

sures that the data-flow at runtime does not deviate from a statically computed data-flow

graph (DFG). DFI is a generic defense with broad coverage but suffers from high runtime

overhead due to frequent instrumentation of all load and store instructions. It has an average

performance overhead of 104% and memory overhead of 50%.

Data Value Integrity. Our goal is to protect software against both control and non-

control data attacks with low performance and memory overhead. To this end, we propose

Data-Value Integrity (DVI), a new defense policy that enforces the integrity of data value for

3

both control and non-control security-sensitive data (e.g., function pointers for an indirect

call, virtual function table pointers in C++ objects, and heap metadata). The key idea of

DVI is to prevent the software from accepting maliciously altered security-sensitive data via

memory corruption attacks. DVI achieves this by having a secure copy of such security-

sensitive data, the copy which is immutable to memory corruption attacks. DVI detects an

attack by checking if the values of the data and its secure copy mismatches. By coincidence,

if the compromised value happens to be the same as the original value, DVI will allow the

program to continue because the attack will not affect program execution. However, if the

values mismatch, DVI will raise a security exception. In this regard, DVI mitigates both

control and non-control data corruption by breaking an essential step of the attack chain

(i.e., subverting security-sensitive data to unintended values). DVI differentiates itself from

flow-integrity approaches, such as CFI and DFI, that struggles with a fundamental trade-off

between precision and runtime overhead. In flow-integrity, it is inevitable to improve the

precision of flow tracking without sacrificing runtime overhead. Instead, DVI is a new design

that detaches from such trade-offs in flow-integrity approaches and provides a generic and

efficient defense.

HyperSpace. We present our prototype, HyperSpace, a defense mechanism that enforces

DVI to guarantee a wide-scope of protection while maintaining low runtime overhead and

minimal additional hardware resources. HyperSpace mirrors values of security-sensitive

data into a safe memory region and validates values before use to enforce value integrity.

HyperSpace manages memory status to enforce spatial and temporal safety of security-

sensitive data. The safe memory region is protected by Intel Memory Protection Keys

(MPK) [45, 51, 70], a per-thread memory protection mechanism, and is efficiently accessible

using hardware segmentation.

To demonstrate the versatility of DVI, HyperSpace enforces DVI to implement four state-

4 Chapter 1. Introduction

of-the-art security mechanisms where the first three mechanisms protect various types of

control data while fourth addresses non-control data, respectively: 1) code pointer separation

(DVI-CPS), 2) virtual function table pointer protection for C++ objects (DVI-VTPtr), 3)

code pointer integrity (DVI-CPI), and 4) inline heap metadata protection. To avoid manual

annotation, HyperSpace includes an LLVM compilation pass that automatically instruments

DVI mechanisms to source code.

We further extended HyperSpace with six optimization techniques aimed to lower HyperSpace’s

runtime overhead via reducing: the cost of each DVI instrumentation, the number of security-

sensitive data to protect, and the number of costly permission changes of the safe memory

region. Additionally, they also optimize the access to safe memory region to be as efficient

as possible.

We protect several benchmarks and real-world applications using HyperSpace to evaluate its

efficiency and effectiveness. These include all C/C++ SPEC CPU2006 programs, NGINX

web server, and PostgreSQL database server. Furthermore, we test HyperSpace against three

real-world exploits and six synthesized attacks that include: virtual function pointer table

hijacking attacks, a COOP attack [72], and a heap exploit. We detail how these attacks are

successfully detected and blocked by HyperSpace as it kills the process when an attempt

for a corrupted sensitive data usage is detected. HyperSpace incurs a small performance

and memory overhead; even when programs are armored with DVI-CPI, which guarantees

the full integrity of all code pointers, DVI on average incurs 6.35% performance overhead

(median: 0.67%) and 15.6% memory overhead (median: 6%). Therefore, data-value integrity

enforcement can be used to protect software from both control and non-control data attacks

efficiently and effectively.

To summerize, our contributions include:

5

• We propose a new defense policy, Data-Value Integrity (DVI), which mitigates both con-

trol and non-control data attacks.

• We built a full prototype of the defense mechanism that enforces DVI, HyperSpace, and

implemented four state-of-the-art security mechanisms to demonstrate how DVI and

HyperSpace can be used to provide securities to various well-known security sensitive

data. We also introduce six optimization techniques to reduce the overhead of HyperSpace

instrumentation.

• We evaluate HyperSpace and its security mechanisms on benchmarks, real applications,

and synthesized attacks. Our results show HyperSpace can protect control and non-

control data with 6.35% performance overhead and 15.6% memory overhead.

Chapter 2

Background

It is well known that the root cause of many modern attacks originates from memory cor-

ruption vulnerabilities. These attacks, such as buffer overflow, allow an adversary to com-

promise our systems by executing arbitrary code or escalating their access privilege for

malicious actions. Common programming languages like C/C++ are especially suscepti-

ble to these memory corruption attacks due to programmers being responsible for handling

memory management. Unfortunately, these languages are often used to build the founda-

tion of our software stacks. Thus, many applications such as internet browsers that are

written using these vulnerable programming languages inherit these shortcomings, making

them vulnerable to countless variations of memory corruption attacks as well.

To address this issue, a security mechanism called Data Execution Prevention (DEP) [47, 57]

was widely adopted to prevent the adversary from injecting malicious code [2, 3, 48] into

the program address space to be executed. To bypass this, attackers took control of the

code pointers and executes a chain of existing code fragments called ”gadgets”. This type of

gadget chaining attack is a form of code reuse attack called Return Oriented Programming

(ROP) [10, 75, 78]. To thwart ROP attacks from locating such gadgets, another security

mechanism called Address Space Layout Randomization (ASLR) [7, 8, 84] was introduced

to randomize the code layout during the load-time a program. However, due to having poor

granularity of only randomizing base address of the program, ASLR can easily be bypassed

by disclosing a single pointer and re-adjusting the ROP gadgets based on the calculated

6

7

ASLR randomized offset.

At this point, the security research branched off mainly into two directions. One is code hid-

ing, and the other is guaranteeing code integrity. Although both methods aim to protect the

same sensitive data such as code pointers from being abused by adversary their approaches

are drastically different from one another.

Code Hiding. The main goal of code hiding is to hinder attackers from successfully

disclosing the location of code pointers. To prevent single pointer disclosure attacks from

succeeding ROP, techniques such as fine-grained randomization approaches were introduced.

These techniques extend ASLR by randomizing code layout at finer granularity such as

function, or basic-block level making it harder for adversaries to re-adjust their ROP gadget

based on single pointer disclosure [5, 22, 42, 52, 68].

To get around fine-grained randomization defense mechanisms, indirect code disclosure was

introduced. Attacks such as Just-in-Time ROP (JIT-ROP) [78] use indirect code disclosure

to read the application code after it has been randomized to build an ROP attack that

is unique to target the newly randomized layout during run-time. To combat this attack,

researchers disabled read permission to code pages since programs do not need to read

their own code in most cases. This defense technique was coined as Execute-only Memory

(XoM) [19, 81]. Nevertheless, attackers found that there remain code pointers inside of

readable memory, such as return addresses, that point into the execute-only memory. This

is called indirect code disclosure and it allows attackers to, yet again, carry out their ROP

attack.

This takes us to the current state of code hiding research which is largely sub-divided into two

techniques. The first technique is called continuous re-randomization [9, 16, 33, 55, 91] where

code layout is continuously randomized during runtime to expire the attacker’s knowledge on

8 Chapter 2. Background

code layout. Although this technique can successfully defend against current state-of-the-art

memory disclosure attack, it suffers from having high overhead, high resource usage, and

being time-sensitive. The second technique is called code-pointer hiding [19, 46, 55, 90, 91]

where they internally encrypt and decrypt code pointers to prevent attackers from gaining

any knowledge of program layout from code-pointers. Much like continuous re-randomization

techniques, code-pointer hiding has drawbacks such as having high-overhead.

Code Integrity. Code Integrity aims to guarantee the integrity of the code by prevent-

ing illegal usage of program execution that deviates the program from its expected behav-

ior. Currently, there exists four major categories of code integrity: Control-Flow Integrity

(CFI) [1, 17, 34, 39, 40, 44, 50, 54, 63, 64, 69, 71, 82, 86, 88, 89, 94, 96], Data-Flow Integrity

(DFI) [15, 79, 80], Code-Pointer Integrity (CPI) [53], and Object-Type Integrity (OTI) [13].

CFI is a defense mechanism that addresses control-flow hijacking attacks. It relies on the

static analysis of Control-Flow Graph (CFG) to generate a set of possible code targets

called Equivalence Class (EC) [49] for each indirect transfers such as call, jump, and return

instructions. These ECs are used during runtime of the program to constraint control-flow

transfers of basic blocks to only those that exist within its EC. However, CFI struggles

against mimicry attacks that ”bend” the control flow within an EC targets to carry out

control-flow hijacking attacks. Additionally, it also does not protect against data leaks or

data corruption attacks.

Similar to CFI, DFI ensures that the data-flow from the runtime of the program does not

deviate from its statically generated data-flow graph. To do this, it first assigns every write

instruction a unique ID. Then, for every load instruction, it checks for the ID to be within

the allowed set generated during compilation. Due to the requirement of every load and store

instructions being instrumented, DFI imposes a very high overhead, making it undesirable

for wide adoption.

2.1. State-Of-the-Art in Memory Corruption 9

CPI enforces memory safety of control data, such as code pointers, by isolating them in a

separate safe region protected via memory hiding. It uses these isolated code pointers to

provide runtime code pointer verification during every control-flow transfers. Although CFI

provides an efficient solution for providing memory safety, it does not protect against non-

control data corruption. Furthermore, it has a low entropy for hiding safe regions which,

once discovered, can easily be corrupted [29, 37, 66].

OTI focuses on securing virtual function table pointers in C++ applications from being

corrupted. The virtual function table pointer (VTPtr) is used for C++’s dynamic dispatch

for polymorphism. VTPtr exists in writable memory, but is only assigned once inside of the

object’s constructor. Thus, attackers could corrupt this pointer to modify the object’s type

or point to a malicious object. Due to its narrow scope, it relies on being used with CFI for

the rest of the memory safety.

2.1 State-Of-the-Art in Memory Corruption

Below are summaries of various types of state-of-the-art attack techniques as well as some

of their recent variations that relate to memory corruption. These attacks take advantage

of memory corruption to formulate an exploit that allows the adversary to skew a program

to behave unexpectedly.

2.1.1 Related Attacks

Return Oriented Programming (ROP). ROP attacks were originally derived from a

Linux code reuse exploit technique known as Return-to-Libc [75]. ROP utilizes a memory

corruption exploitation concept to bypass DEP by chaining together a series of existing code

10 Chapter 2. Background

gadgets that end in corruptible sensitive code transfers such as code pointers and return

addresses. Due to various ROP mitigation techniques, ROP attacks have evolved into many

varieties of forms that target specific loopholes in those techniques. Few of the well-known

ROP variants are Just-In-Time ROP (JIT-ROP) [78] and Blind ROP (BROP) [10]. JIT-

ROP can map out the application’s runtime memory layout by continuously abusing its

memory disclosure vulnerability to bypass static load-time randomization. Once disclosed,

the memory layout can be used to dynamically discover gadgets and are used to JIT-compile

a target program to a serialized payload that is usable by the exploit scripts. BROP attacks

synthesize ROP exploits without the target’s binary. It does this by bypassing ASLR using

a technique known as stack reading. In stack reading, it aims to disclose return addresses

and stack canaries by continuously abusing buffer overflow vulnerabilities. Using this infor-

mation, BROP targets the write system call to dump the target’s binary which is then used

to synthesize the traditional ROP payload.

Spatial Memory Safety Exploit. Insuring a dereference to be within valid object bounds

is the main idea behind spatial memory safety. Attack techniques such as buffer overflows

are a typical example of an attack that violates the spatial memory. To mitigate, defense

mechanisms such as stack canary [18, 56] enforce object bounds checking to guarantee the

spatial property.

Temporal Memory Safety Exploit. Valid memory dereferences are the focus of temporal

memory safety property. Attacks such as use-after-free attempts to violate this property

by dereferencing dangling pointers. Object location-based technique is one of the ways to

thwart temporal safety exploit by having an auxiliary data structure to keep track of valid

allocated/deallocated status of each object’s memory location [59].

Control/Non-Control Data Attack. Control and non-control data attacks are broad

2.1. State-Of-the-Art in Memory Corruption 11

categorization of various memory corruption attacks. Control data attacks involve attacks

that corrupts data, such as code pointers, to change the behavior of the program control

flow. ROP is one of many attacks that are categorized as a control data attack. Non-Control

attacks corrupt any other data that are not control data such as heap metadata to change

program’s behavior.

Counterfeit Object-oriented Programming (COOP). COOP attack [72] takes advan-

tage of the C++ semantics of virtual functions to construct ROP attacks. It defines two

important components: vfgadgets and counterfeit objects. Virtual functions used to carry

out the attack are vfgadgets. Whereas, counterfeit objects are maliciously injected objects

in a attack-controlled memory location. To carry out the attack, it first finds the counterfeit

objects and vfgadgets. Afterward, it is essential to locate a main loop gadget where a virtual

function iterates over an array of C++ object pointers that invokes virtual functions. The

main loop is manipulated to continuously loop over itself to provide a platform for orches-

trating the rest of the attack. Finally, for each iteration of a corrupted array that carries

counterfeit objects, various combinations of vfgadgets are used to carry out a payload of the

exploit.

2.1.2 Relevant Memory Protection Features

Stack Cookies/Stack Canary. Stack canary [18, 56] is a security mechanism used

to protect return pointers from being corrupted via buffer overflow attacks. When stack

canary is enabled, a randomized integer value called ”canary value” is chosen at the start of

a program. This canary value is placed just before the return pointer to provide a way to

check for corruption detection before each return instructions. The main concept is that, if

buffer overflow was to corrupt the return pointer, the canary value that is placed in between

12 Chapter 2. Background

the buffer and return address will be corrupted therefore triggering an invalid canary value.

However, attacks such as BROP that can perform memory disclosure by repeatedly abusing

buffer overflow vulnerabilities can bypass stack canaries.

Address Space Layout Randomization (ASLR). ASLR [7, 8, 84] is a security technique

that is widely adopted to deny an attackers knowledge of the code layout. To achieve this,

it randomizes the arrangement of the base address of executable, stack, heap, and libraries

once during load-time. Although this technique increases entropy to memory layout, it has

some limitations that allow attackers to bypass its security. Attack techniques such as Just-

In-Time ROP [78] that uses memory disclosure vulnerabilities to read the code layout of a

program during runtime. Not only this mechanism lacks in randomization granularity but

also, further randomization during runtime is required for better security guarantees.

Data Execution Prevention (DEP)/NX-bit (No-eXecute). DEP [47, 57] is a security

feature that utilizes an additional inverted permission bit called nx-bit for supporting execute

permission of memory page. It is used to prevent the execution of machine instructions

for memory space used for regular data. Unfortunately, this mitigation technique can be

easily be bypassed using return-to-libc and other variations of return-oriented programming

attacks.

Memory Protection Extension (MPX). Intel MPX [67] is an extension to the x86

architecture and introduces four new 128-bit bounds registers (BND0-BND3). Each register

contains a pair of 64-bit lower and upper bounds (LB and UB) values of a buffer for checking

pointer references. MPX is intended to provide efficient protection against memory attacks

such as buffer overflows and out-of-bounds access. It was not widely adopted due to the

overhead of bounds checking.

Memory Protection Keys (MPK). MPK [45, 51, 70] is Intel’s new hardware primitive

2.1. State-Of-the-Art in Memory Corruption 13

that utilizes previously unused four bits in each page table to assign sixteen independent

permission key values to any given memory page. Thus, using this feature, a process can

partition it’s memory up to sixteen regions and independently assign memory access permis-

sions to those regions. Additionally, since the control register is local to each thread, each

thread’s permission can be unique from another. Thus, MPK allows thread-local permission

control on groups of pages without modifying the page tables.

Chapter 3

Data Value Integrity

In this chapter, we first present the value invariant property, which is our common observa-

tion on security-sensitive data. We then present how the value invariant property holds for

virtual function table pointers in C++. Lastly, we introduce data-value integrity (DVI).

3.1 Value Invariant Property

Data-Value Integrity (DVI) is a new security policy that protects security-sensitive data,

such as function pointers and variables that store security credentials. DVI achieves this

by enforcing the integrity guarantee for those values, i.e., preventing variables from being

overwritten to different values by memory corruption attacks.

DVI is inspired by many previous defense approaches that aim to protect program’s integrity

including Data-Flow Integrity (DFI) [15, 79, 80], Control-Flow Integrity (CFI) [1, 17, 34, 39,

40, 44, 50, 54, 63, 64, 69, 71, 82, 86, 88, 89, 94, 96], Code Pointer Integrity (CPI) [53], and

Object Type Integrity (OTI) [13]. Prior defense approaches can protect only control data

(i.e., code pointers) [1, 13, 17, 34, 39, 40, 44, 50, 53, 54, 63, 64, 69, 71, 82, 86, 88, 89, 94, 96]

or suffer from high performance overhead by tracking complex data flow [15, 79, 80].

In contrast to existing approaches, we aim to provide a generic security policy that can be

utilized to protect both control and non-control data with low runtime overhead. While

14

3.1. Value Invariant Property 15

1 // Register a sensitive memory region
2 // starting at addr with size
3 void dvi_register(void *addr, int size);
4 // Unregister a sensitive memory region
5 void dvi_unregister(void *addr, int size);
6 // Write the current value in a sensitive memory
7 // region to the corresponding safe memory region
8 void dvi_write(void *addr, int size);
9 // Same as dvi_write() but do not allow further writes

10 void dvi_write_final(void *addr, int size);
11 // Check if the sensitive memory value is the same
12 // as the safe memory value
13 void dvi_assert(void *addr, int size);

Non-sensitive

Sensitive,
Uninitialized

Sensitive,
Initialized

Sensitive,
Finalized

dvi_unregister()

dvi_write_final()

dvi_write()

dvi_write_final()

dvi_assert() dvi_assert()

dvi_write()

dvi_unregister() dvi_unregister()

dvi_register()

Figure 3.1: DVI primitives (left) and the state transition diagram (right) for DVI
protected memory. DVI primitives trigger state transitions for a specified memory loca-
tion. DVI manages the intended value of sensitive data for integrity checking. Mismatching
values of sensitive data or an illegal state transition indicates a value integrity violation
(dvi_assert).

“generic” and “fast” are often considered an oxymoron, our key insight behind DVI is to

enforce value integrity instead of tracking flow integrity of control or data transfers, which is

expensive and complex. Our reasoning for this is simple: even if a program is compromised

by attackers, if security-sensitive values (e.g., function pointer) remain the same as the

original by coincidence, the attack will not affect program execution. Therefore, such memory

corruption attacks can be mitigated by breaking an essential step of their attack chain:

subverting security-sensitive data to unintended values. Attackers may attempt to exploit a

set of security vulnerabilities, but they cannot achieve arbitrary code execution because code

pointers cannot be altered. Privilege escalation also cannot occur because memory blocks

storing a program’s privilege cannot be altered, etc.

Our key intuition behind DVI originates from a common pattern in programs: the value

of security-sensitive data does not frequently change, and there exists a period that values

should never be changed. These two patterns form the basis of our value invariant property

for security-sensitive data. That is, during the life cycle of an object, it is prevalent that

values of security-sensitive data never change after their legitimate assignments.

16 Chapter 3. Data Value Integrity

3.2 VTPtr in a C++ Object

We illustrate our observation of the value invariant property using a virtual function table

pointer (VTPtr) in a C++ object.

Virtual Function Table Pointer (VTPtr). The VTPtr pointer is a hidden member

variable for dynamic polymorphism used for virtual function calls in C++. Each object type

has a virtual function table. When an object is created, a constructor assigns the address

of the appropriate virtual function table to its VTPtr variable according to its object type.

After initialization, the program can invoke virtual function calls by indexing this table (e.g.,

this->VTPtr[idx]()).

Attacking VTPtr. Because VTPtr determines which virtual function to call at runtime,

the value stored in VTPtr is security-sensitive. Modification to its value, e.g., pointing to

a fake table structure (e.g., FakeVTPtr), allows attackers to execute arbitrary code (e.g.,

system()) at a virtual function call site (i.e., this->FakeVTPtr[idx]()), resulting in a vtable

hijacking attack [13, 95] or a COOP attack [72].

VTPtr Life Cycle. We observe the following three-phase life cycle of a C++ object with

respect to the value of the VTPtr.

1. Construction: The value of the VTPtr is assigned when an object is created as each object

type has its virtual function table. Once the object type is determined by the constructor,

the address of the corresponding virtual function table is determined, and its address is

assigned to VTPtr.

2. In-use: After construction, the object is now ready for use. The program may invoke

virtual functions in the virtual function pointer table via VTPtr.

3. Destruction: At the end of an object’s life cycle, the object is destructed, making VTPtr

3.3. DVI Overview 17

value no longer valid nor legitimate.

Value Invariant Phase of VTPtr. VTPtr holds the value invariant property throughout

in-use phase. Because a C++ object’s type will never change during an object’s life cycle,

neither should its VTPtr value. Thereby, DVI aims to preserve the integrity of the VTPtr

during this phase to defeat attacks that attempt to modify it.

3.3 DVI Overview

Here, we give an overview of DVI by demonstrating how to protect VTPtr using DVI.

Overview. DVI protects security-sensitive data from memory corruption attacks by enforc-

ing value invariant property. DVI achieves this by making these data immutable (read-only)

during their value invariant phase. Therefore, it prevents memory corruption attacks from

overwriting the data. To apply DVI to security-sensitive data, identifying their value in-

variant phase is essential. Hence, DVI requires an analysis of the life cycle of data as we

practice in the previous section. After identifying the value invariant phase, DVI asserts the

read-only permission to the corresponding memory block that stores protected data.

Fine-grained Memory Permission Control. DVI requires fine-grained permissions

control on memory. For instance, to protect VTPtr, we need to make only the 8-byte

memory for VTPtr read-only while keeping the rest of memory space storing the object as

read-writable. However, commodity hardware cannot support this as current the smallest

granularity for memory permissions control is a page, 4KB in size. To this end, DVI relies on

a new shadow memory system HyperSpace, a key technique enabling DVI to control mem-

ory permissions in 8-byte granularity. In a nutshell, HyperSpace divides a system’s memory

space in two, a regular and safe region, respectively. The regular region is the general read-

18 Chapter 3. Data Value Integrity

writable region, while the safe region is read-only by default and can only be writable via

DVI primitives, which we introduce next. We further describe how HyperSpace works and

provides fine-grained permissions control with commodity hardware in Chapter 6.

DVI Primitives. Based on the fine-grained memory permissions control backed by

HyperSpace, DVI manages the state of a memory location as illustrated in Figure 3.1. When

a program starts, all memory is in a non-sensitive state, meaning a memory location does not

store security-sensitive data. To protect a memory location storing security-sensitive data,

DVI first requires the location to be registered upon its allocation (dvi_register). Then,

the memory will be in a sensitive, uninitialized state. Once the sensitive data is written

to the regular memory location, DVI creates a copy of its value in the safe memory region

(dvi_write) that DVI manages at runtime. Now, the memory is in a sensitive, initialized

state. In case that we know a write should be the final one until the deallocation of the

memory, we can additionally annotate this (dvi_write_final). This will put the memory into

sensitive, finalized state and DVI does not allow any further writes to the memory location.

VTPtr is a good use-case of this state because it is written only once at object construction

and should not be updated until the object’s destruction. Before using any sensitive data,

the program will check whether its value is corrupted by comparing the value in regular

memory with the value in safe memory (dvi_assert). If values do not match or a program

attempts to perform an illegal state transition, these anomalies alert the violation of value

integrity. Finally, when a sensitive memory location needs to be deallocated, it is unregis-

tered (dvi_unregister) and reverting the memory locations to non-sensitive state, allowing it

to be reused again in the future.

Applying DVI to VTPtr. To apply DVI, we instrument a program to insert DVI primitives

alongside memory access to VTPtr, based on its value invariant life cycle. VTPtr is a case

with a clear value invariant phase in the life cycle of a C++ object. First, we instrument

3.3. DVI Overview 19

1 /** == Example of a control data corruption attack ============ */
2 void X(char *); void Y(char *); void Z(char *);
3
4 typedef void (*FP)(char *);
5 static const FP arr[2] = {&X, &Y};
6
7 void handle_req(int uid, char * input) {
8 FP func; // control data to be corrupted!
9 // dvi_register(&func, sizeof(func));

10 char buf[20];
11
12 if (uid<0 || uid>1) return; // only allows uid == 0 or 1
13
14 func = arr[uid]; // func pointer assignment, either X or Y.
15 // dvi_write_final(&func, sizeof(func));
16 strcpy(buf, input); // stack buffer overflow!
17 // dvi_assert(&func, sizeof(func));
18 (*func)(buf); // func is corrupted!
19 // dvi_unregister(&func, sizeof(func));
20 }

21 /** == Example of a non-control data corruption attack ======== */
22 bool authenticate(char *packet);
23
24 void handle_packet(char *input) {
25 int auth = 0; // non-control data to be corrupted!
26 // dvi_register(&auth, sizeof(auth));
27 // dvi_write(&auth, sizeof(auth));
28 char buf[1000];
29
30 packet_read(input,buf); // stack buffer overflow!
31 if (authenticate(buf)) {
32 auth = 1;
33 // dvi_write(&auth, sizeof(auth));
34 }
35 // dvi_assert(&auth, sizeof(auth));
36 if (auth) { // auth is corrupted!
37 grant_access(buf);
38 }
39 // dvi_unregister(&auth, sizeof(auth));
40 }

Figure 3.2: Example vulnerable C code. Attackers can overwrite security-sensitive
data by exploiting memory corruption vulnerabilities (strcpy() at Line 16 or packet_read()
at Line 30) to subvert control flow (arbitrary code execution at Line 18) or change pro-
gram behavior (illicitly reach grant_access, Line 37). In Data-Value Integrity (DVI), we
directly check if the value of sensitive data is corrupted without tracking control flow or
data flow. Sensitive data is first registered (dvi_register) and its value is stored in safe mem-
ory (dvi_write, dvi_write_final) upon write. Its integrity is checked before use (dvi_assert).
Finally, its memory location is unregistered upon deallocation (dvi_unregister).

dvi_register to register VTPtr inside of a C++ object immediately after object allocation.

For the initialization of the VTPtr, there is only one place, in the constructor, that updates

the value of the VTPtr. There exist no further legitimate value updates to VTPtr before the

destruction of the object. Hence, to protect VTPtr from attacks, right after the constructor

assignment of virtual function pointer table address to VTPtr, we invoke dvi_write_final to

store the original value into a safe region. Then, the value invariant phase starts. During this

phase, read-only permissions are applied to the value of VTPtr in the safe region; this means

that no value updates can be made, and thereby, DVI protects VTPtr from any attacks that

attempt to overwrite its value. To ensure the integrity of the VTPtr value during this phase,

we instrument all uses of VTPtr (i.e., invoking a virtual function call) to call dvi_assert

beforehand to compare values in the regular region and its corresponding copy in the safe

region. Any mismatch of values is flagged as an attack. Finally, when the object is being

20 Chapter 3. Data Value Integrity

destructed, we unregister the memory location from DVI via dvi_unregister to release the

integrity protection on the corresponding safe region.

Chapter 4

DVI as a Generic Exploit Mitigation

We further demonstrate how DVI works as a mitigation to memory corruption attacks with

two examples–protecting both control and non-control data–in Figure 3.2. Those examples

are further extended to provide defense against attacks on control data such as DVI-CPS,

DVI-CPI, and virtual function table protection as well as defense against attacks on non-

control data, such as protecting inline heap metadata from corruption in Chapter 7. After

that, we compare and contrast DVI with existing mitigation such as CFI, CPI, and DFI. We

share their security/performance drawbacks and advantages that HyperSpace can leverage

by enforcing DVI.

4.1 Protecting Control Data: a Function Pointer

Vulnerability. The left code snippet in Figure 3.2 is an example with a stack buffer

overflow vulnerability that allows attackers to alter control data (func at Line 8) via an

insecure function call of strcpy() (at Line 16). At Line 14, code assigns the address of either

function X or Y to func depending on function argument, uid. Without loss of generality,

assume the value of uid at runtime as 0, selecting function X as the call target. Line 18 is

supposed to call function X via func. However, attackers may corrupt the value in func by

overflowing buf into input (i.e., input size > 20), exploiting a buffer overflow vulnerability

to change the value in func from X to some other, Y, Z, or any arbitrary code address (e.g.,

21

22 Chapter 4. DVI as a Generic Exploit Mitigation

system() to execute an arbitrary command).

Value Invariant Life Cycle of func. We analyze the life cycle of security-sensitive variable

func with respect to its value invariant period as follows.

1. Assignment: The first and only assignment to func is on Line 14.

2. In-use: After the assignment and before the destruction of the stack, the value of func

does not change. Thus, its value invariant phase starts. The phase ends when the variable

is destructed.

3. Destruction: The stack variable func will become invalid when the function unwinds its

stack, i.e., at the function epilogue.

DVI Instrumentation. Our target variable to protect is func; its value invariant phase

starts right after assignment to func is done at Line 14. Hence, we instrument Line 14

with dvi_register and dvi_write_final, to register the variable as a sensitive memory block,

and write the function address, and lock the memory (Line 9 and 15). Before the program

uses the variable, e.g., calling a function via func at Line 18, we need to check if the value

stored in func is the same as the value recorded in the safe region. To do this check, we

insert dvi_assert on Line 17. When the variable is destructed at function epilogue, we insert

dvi_unregister at Line 19 to unregister the variable from protection.

Defeating Attacks with DVI. Overwriting func by exploiting the buffer overflow vulner-

ability at Line 16 can be mitigated by DVI. Before the program executes Line 16, DVI has

already stored the value of func, for example, the address of function X if uid == 0, in the

safe region and locked the value with dvi_write_final. Launching an attack may overwrite

the value of func in the regular memory region, to some other values such as the address

of Y, Z, or an arbitrary function address. However, doing so will raise an alarm when the

4.2. Protecting Non-control Data: Authentication Status 23

program uses func because before invoking a function through func, dvi_assert will compare

the value in the regular region to that in the safe region, and kill the program process if

these values do not match (e.g., X != Y).

4.2 Protecting Non-control Data: Authentication Sta-

tus

Vulnerability. The code on the right of Figure 3.2 is an example with a stack buffer over-

flow vulnerability, assuming that receiving more than 1000 bytes in packet_read(input,buf)

at Line 30 may overflow the buffer, buf. By exploiting this vulnerability, an attacker may

corrupt the auth variable (non-control data at Line 25), placed right next to buf. Without

any protection, an attacker can overwrite the value of auth, (e.g., from 0 to 1), to make an

unauthenticated session as authenticated one to bypass the check at Line 36.

Value Invariant Life Cycle of auth. There exist two lines that perform assignments to

auth, and we can separate its life cycle as the following five-steps.

1. Assignment #1: The initial assignment, writing value 0, is made to auth at Line 25.

2. In-use #1: Right after assigning initial value 0, the value invariant phase starts. It ends

at two locations, Line 32 where new value 1 is assigned after passing authentication check

at Line 31, and the function epilogue, when the variable is destructed.

3. Assignment #2: After passing an authentication check at Line 31, the program writes

value 1 to auth to record the client’s authentication status at Line 32.

4. In-use #2: After the second assignment, there are no other assignments to auth. The

second value invariant phase starts, and ends when the local stack variable is destructed.

24 Chapter 4. DVI as a Generic Exploit Mitigation

5. Destruction: The stack variable auth will become invalid when the function destructs its

stack, i.e., at the function epilogue.

DVI Instrumentation. Our target variable to protect is auth, and its first value invariant

phase starts right after the initial assignment of auth at Line 25. So we instrument that line

with dvi_register and dvi_write to register the variable as a sensitive memory block and also

write the value 0 to the safe region (Line 26 and 27). There could be an update (Assignment

#2) during the first value invariant phase. To handle this, we also instrument Line 32 to

correctly update the value in the safe region and start the second value invariant phase.

Note that across two invariant phases, the value stored in the safe region is kept read-only,

and is writable only if being accessed via dvi_write. Before the program uses the variable for

checking the authentication status at Line 36, we need to check if the value stored in auth

remains the same as the value stored in the safe region. To assert this, we insert dvi_assert

at Line 35. When the variable is destructed at the function epilogue, we insert dvi_unregister

at Line 39 to unregister the variable from DVI protection.

Defeating Attacks with DVI. The buffer overflow vulnerability at Line 30 is mitigated

in the same way as in the previous example in section 4.1. Specifically, dvi_assert will fail

on the use of non-control data auth instead of a control data (auth_regular != auth_safe).

4.3 Security Guarantee of DVI

Prerequisites for Security Guarantee. DVI relies on a sound analysis of identifying

value invariant phases of security-sensitive data. DVI protection requires a program to be

correctly instrumented for all security-sensitive data manipulation. Upon allocation and

assignment of such data, the program must place dvi_register and dvi_write accordingly to

4.3. Security Guarantee of DVI 25

create a copy in the safe region. To use DVI protected data (e.g., indirect call/jump, reading

sensitive data for a branch), the program must check the integrity of values beforehand (i.e.,

comparing values in the regular and safe regions).

Security Guarantees. DVI guarantees the value integrity of security-sensitive data during

their value invariant phase. During runtime, the safe memory region is read-only except for

legitimate accesses via DVI primitives (e.g., dvi_write or dvi_write_final) to prevent memory

corruption attacks in the safe region. For any value discrepancy between the regular and

the safe memory region (i.e., the data in regular memory is corrupted) when using the data,

DVI raises a security exception in the preceding dvi_assert.

Furthermore, DVI guarantees spatial memory safety for security-sensitive data in the safe

memory region. This guarantee prevents memory corruption from legitimate uses of DVI

primitives (dvi_write and dvi_write_final). In particular, DVI checks the length of data to

ensure write does not exceed legitimate bounds.

DVI also guarantees registration-based temporal memory safety by keeping track of (un)registering

of security sensitive-data via DVI primitives such as dvi_register and dvi_unregister. This

can prevent attackers from altering non-sensitive data to confuse the program to refer them

as security-sensitive data. In this regard, DVI can prevent the attacks by keeping track of

the registration state of security-sensitive data in the safe memory region. Particularly, all

security-sensitive data will be registered first (via dvi_register) during allocation and will be

deregistered after its life cycle. In contrast, a pointer to a non-sensitive data can point to an

deregistered location in the safe memory region. In such a case, DVI detects a deregistered

state, and raises an alarm to prevent the attack.

How DVI Mitigates Vulnerability Exploitation. In combination with guaranteeing

the memory safety and value invariant property of security-sensitive data, DVI mitigates

26 Chapter 4. DVI as a Generic Exploit Mitigation

attacks by cutting off an essential attack step of the exploit. Under the protection of DVI,

attackers can still exploit memory corruption vulnerabilities, e.g., a buffer overflow or an ar-

bitrary write vulnerability, to overwrite some data in a program’s memory space. However,

DVI guarantees that the safe memory region is read-only for all non-DVI primitives access.

Thus, the copy of the security-sensitive data in safe memory region under DVI protection,

e.g., code pointers, heap metadata, privilege state variables, etc., cannot be overwritten

by attackers due to its read-only access permission. Applying read-only permissions blocks

essential steps for exploits such as overwriting code pointers to achieve arbitrary code execu-

tion, escalating privilege by overwriting privilege status variables, or altering heap metadata

to build other exploit primitives.

4.4 Defense Advantages in DVI

We summarize defense advantages of DVI when compared to existing techniques, such as

CFI, CPI, and DFI.

vs. CFI. DVI provides better security than CFI in protecting control data. DVI allows only

one valid target at each indirect call site, whereas most CFI techniques allow many targets

(427 targets for recent work [50]), leaving a wider attack surface for attackers. Additionally,

DVI does not require dedicating CPU cores to run background analysis, unlike µCFI [44],

and is thereby, more scalable.

vs. CPI. DVI brings better security than CPI [53] by protecting the safe memory region

with hardware memory protection (Intel MPK), whereas CPI relies on insecure information

hiding [29, 37, 66].

vs. DFI. DVI outperforms DFI on runtime overhead of control and non-control data pro-

4.4. Defense Advantages in DVI 27

tection. DVI avoids expensive data-flow analysis while protecting many classes of security-

sensitive data.

Chapter 5

Threat Model and Assumptions

DVI and HyperSpace focuses on defending against memory corruption based attacks. Our

assumption includes a program that has one or more memory vulnerabilities (e.g., buffer

overflow) that allow attackers to read from and write to arbitrary memory. However, the

attacker cannot modify or inject code due to Data Execution Prevention (DEP) [47, 57].

The attacker can use arbitrary write capability to perform control data or non-control data

attacks. Control data attacks are a subset of data attacks, where attackers exploit memory

corruption vulnerabilities to hijack program control flow by overwriting data (e.g., function

pointer, virtual function table pointer). Non-control data attacks exploit memory corruption

vulnerabilities to overwrite security-critical data (e.g., heap metadata) without hijacking the

intended control flow of a program. We assume that all hardware and OS kernel are trusted

such that attacks exploiting those vulnerabilities are out of scope.

28

Chapter 6

HyperSpace Design

The main challenge to realizing DVI is designing a secure and efficient metadata storage

mechanism to keep track of the state and value of each sensitive element. In particular, the

metadata mechanism cannot be vulnerable to tampering by attackers as well as its access

cost and additional memory overhead should be minimal to be practical. To address this

problem, we propose HyperSpace, a secure and efficient metadata storage mechanism for

DVI. We discuss HyperSpace design details next and how HyperSpace can be leveraged for

various security applications in the next chapter.

Parallel Safe Memory Region Layout. To efficiently access the safe memory region, we

bisect the virtual address space of a process into a regular memory region and a safe memory

region as illustrated in Figure 6.1. When a process is created, HyperSpace kernel bisects the

user virtual address space and reserves the upper half of the virtual address space as the

safe memory region. Additionally, the %gs register is set to the starting address of the safe

memory region. With this parallel memory layout, accessing a safe memory location from

a regular memory location is merely adding the original regular memory offset to the start

address of the safe memory region; this operation can be encoded with a single instruction in

x86 architecture using segmentation (see Figure 6.2). We note that the safe memory region

is an anonymous region, managed by the kernel. That is, OS kernel reserves half of the

virtual address space, however, a physical page is allocated only on a process’s first access

to a page in the safe region minimizing runtime memory overhead.

29

30 Chapter 6. HyperSpace Design

+

Regular memory region Safe memory region

addr %gs %gs:(addr)

data

D

heap

H

stack

S
Status
bitmap

D H S

Low address High address

Figure 6.1: HyperSpace memory layout. We re-purpose hardware segmentation of x86
architecture for efficient access to HyperSpace. The safe memory region is protected by Intel
Memory Protection Keys (MPK).

Protection without Relying on Hiding. The parallel memory layout enables access to

the safe memory region to be efficient. However, taking such a large virtual address space

makes it infeasible to hide the safe memory region from attackers. Instead, we protect the

safe memory region using Intel Memory Protection Keys (MPK), a relatively new hard-

ware feature in x86-64 architecture [45, 51, 70]. By default, the safe memory region is not

given write permission (i.e., it is read-only). Only during DVI operations that update the

safe memory region (i.e.,dvi_register, dvi_unregister, dvi_write, and dvi_write_final), does

HyperSpace temporarily grant write permissions (i.e., read-writable) to only the thread ex-

ecuting those DVI operations. The discussion regarding possible misuse of DVI primitives is

addressed in Chapter 11. Thus, any write attempt to the safe memory by an unauthorized

thread at an unauthorized time will cause a page fault. We use Intel MPK to efficiently

change access permissions of the safe memory region for each thread. With MPK, a virtual

memory region is assigned to one of the 16 domains under a protection key, which is en-

coded in a page table entry. Memory access permissions of each domain is independently

controlled through an MPK register. Changing memory access permissions is fast as it only

takes around 23 CPU cycles using a non-privileged instruction wrpkru. Also, the impact of

permission changes is thread-local as the MPK register is per-CPU.

31

Representing State of Safe Memory. In DVI, each memory location is in one of

four states shown in Figure 3.1. HyperSpace manages an additional metadata area at the

end of the safe memory regions to represent the state of each memory location. Because

HyperSpace manages sensitive data in 8-byte granularity, 2 bits of metadata are assigned

for an 8-byte of sensitive data. The state bitmap is updated upon memory state transition.

With our state bitmap representation, access to the state is cheap (see Figure 6.2). Also,

the maximum memory overhead is bounded to 103.1% of an application’s total memory

usage in the regular memory region (T + T ∗ 2 bits
64 bits

where T is usage). This is relatively low

compared to approaches managing rich metadata (e.g., tag, bounds) such as CPI [53] and

SoftBound+CETS [58, 59, 60].

Low Memory Overhead. HyperSpace relies on sparse address space support and lazy

loading via the underlying OS for memory management of the safe memory region. Initially,

OS kernel reserves the virtual address space without allocating physical memory. When a

process accesses the safe memory region, the OS kernel will allocate a physical page for a

faulting virtual address. Our evaluation results in subsection 10.3.2 show that additional

memory overhead of HyperSpace is marginal even when using 2 MB huge pages to reduce

memory access overhead to the safe memory region.

Putting It All Together. With HyperSpace, the design of DVI’s API in Figure 3.1 is sim-

ple and efficient. Registering/unregistering sensitive data (dvi_register and dvi_unregister)

changes the corresponding state bits in the state bitmap. Writing sensitive data (dvi_write

and dvi_write_final) copies the sensitive value to the safe memory region and changes state

if necessary. HyperSpace temporarily grants write permissions only during running these

four DVI operations. DVI checks value integrity by comparing values between regular and

safe memory regions (dvi_assert). For all DVI operations, HyperSpace checks if the memory

is in a valid state for a given operation. Otherwise, HyperSpace raises a security exception.

32 Chapter 6. HyperSpace Design

1 // Get the safe memory value for a given address
2 uint64_t dvi_load_safe_memory_8b(void *addr) {
3 uint64_t value;
4 asm volatile (”mov %%gs:0x0(%[offset]), %[value]”
5 :[value] ”=r” (value) :[offset] ”r” (addr));
6 return value;
7 }
8
9 // Get the first status bit for a given address

10 uint8_t dvi_get_safe_memory_status_bit0(void *addr) {
11 void *bitmap_addr = (void *)(((uint64_t)addr >> 5) & ~0x3);
12 uint64_t bitmap_idx = ((uint64_t)addr & 0xf8) >> 2;
13 uint8_t bit;
14 asm volatile (
15 ”btq %[bitmap_idx], %%gs:(%[bitmap_addr],%[area_sz])”
16 : : [bitmap_idx] ”r” (bitmap_idx),
17 [bitmap_addr] ”r” (bitmap_addr),
18 [area_sz] ”r” (ADDR_SPC_SZ));
19 asm volatile (”setc %[bit]” : [bit] ”+rm” (bit));
20 return bit;
21 }

Figure 6.2: Code for accessing safe memory and its state.

This enforces memory safety of sensitive data as discussed in section 3.3. With HyperSpace,

accessing both the safe memory region and the state bitmap can be efficiently done via %gs

segment register as shown in Figure 6.2.

Chapter 7

Security Applications

This chapter demonstrates how DVI can be applied to defeat control and non-control data

attacks by enforcing value integrity guarantees. As discussed in section 3.3, registration and

deregistration of sensitive data allows DVI to keep track of sensitive data by monitoring their

protective status. By saving a copy of sensitive data on valid store instructions, DVI keeps

track of legitimately stored value for corruption detection. Most importantly, DVI verifies

the integrity of sensitive data before it is used.

Control data protections that HyperSpace implements consist of: Code Pointer Separa-

tion (DVI-CPS) (i.e., protecting all code pointers), Code Pointer Isolation (DVI-CPI) (i.e.,

protecting all sensitive pointers), and virtual function table pointer protection in C++

objects (DVI-VTPtr). We present automatic instrumentation for these three protections.

HyperSpace provides coverage of all sensitive global, heap, and stack variables. We use

SafeStack [53] to protect return addresses and safe objects–stack objects whose address is

not taken–by isolating them from sensitive stack variables that are stored in the regular stack.

DVI can be used to protect non-control data as well such as heap metadata. For this, we

modified ptmalloc2 [32], which is the default memory allocator in most Linux distributions,

manually inlining DVI API into its source code.

33

34 Chapter 7. Security Applications

7.1 Code Pointer Separation (DVI-CPS)

To guarantee the safety of code pointers, all function pointers must be secured using DVI’s

register, write, assert and deregister primitives. HyperSpace accomplishes this by accurately

identifying and instrumenting all instructions that allocate, write, use, and deallocate func-

tion pointers.

This instrumentation feature is a part of the HyperSpace module pass in LLVM. First, we

identify function pointers using LLVM type information. Because function pointers can exist

inside of structs or arrays, HyperSpace recursively looks through each element of container

types as well. For cases where function pointers are recognized as universal pointers (i.e.,

void* or char*), we look ahead for its typecasting to its actual type further down in the

program and instrument accordingly.

Registration of function pointers is instrumented immediately after its allocation. Excluding

those in the safestack, HyperSpace instruments all heap variables, global variables, and other

address-taken function pointers on the regular stack via dvi_register.

To determine when to perform DVI write for function pointers, we look for any unsafe

function pointers (i.e., function pointers are not on the safe stack) that are the destination

operand of a store instruction. The dvi_write will be instrumented following such store

instruction if the variable is not in the safestack.

dvi_assert should be called immediately before using any sensitive data. In the case of

function pointers, we look for call and load instructions. Once indirect call instructions are

detected, HyperSpace instruments those function pointers that are in the safestack.

For sensitive heap and mmap-ed variables, deregistering is instrumented before free and

munmmap calls, respectively. For stack variables, we deregister the entire current stack

7.2. VTable Protection in C++ (DVI-VTPtr) 35

frame from the last to the first registered variable address in a local frame at once to prevent

from having too iteratively deregister.

7.2 VTable Protection in C++ (DVI-VTPtr)

In C++, virtual functions are an essential part of dynamic polymorphism. Hijacking the

virtual function table pointer of a live object or an already-freed object (i.e., use-after-free)

is a commonly exploited attack [13, 72, 95]. HyperSpace can guarantee the C++ object’s

VTPtr integrity by storing a copy in the safe memory region during initialization.

To protect virtual function table pointers, we need to first correctly identify VTPtr within

C++ objects. This can be detected using HyperSpace’s type analysis because we are looking

for a pointer to an array that contains function pointers. When recursively dereferenced

from all proceeding pointer types, our analysis can identify the code pointers and mark the

VTPtr as a sensitive data. The registration of VTPtr is instrumented along with the rest of

regular sensitive type registrations during object allocation; no extra registration semantics

changes were needed for this support. To guarantee that the VTPtr of an object will never

change, HyperSpace instruments the dvi_write_final call right after VTPtr is assigned by the

object’s constructor. This ensures that the object’s VTPtr does not get modified outside of

its constructor. A slight extension is made in the pass to recognize when an object’s VTPtr is

loaded; HyperSpace instruments dvi_assert primitive immediately before the load instruction

to guarantee that the VTPtr has not been tampered with. Similar to registration, no changes

are necessary for deregistration. The same deregistration semantics as in DVI-CPS is used

to deregister the VTPtr along with other sensitive values the object may contain.

36 Chapter 7. Security Applications

7.3 Code Pointer Integrity (DVI-CPI)

Building on Code Pointer Separation (CPS), HyperSpace can be extended to guarantee the

integrity of all relevant sensitive pointers. To achieve this, HyperSpace recursively protects

all sensitive code pointers and pointers of sensitive objects which are of sensitive type as

defined in CPI [53].

In order to detect the additional sensitive pointers required for CPI, the type analysis de-

scribed in the CPS section is extended to include more cases. Composite type objects that

contain a function pointer are recognized as a sensitive type. Hence, pointers to these sensi-

tive types are protected and composite types that contain these pointers are also protected

creating a recursive chain of protection.

After detecting protection sets for all of the sensitive types in the LLVM module pass, its

instrumentation is similar to CPS. HyperSpace finds and instruments all IR instructions that

declare, modify, and use sensitive pointers. When a sensitive variable is declared, HyperSpace

looks up its protection sets from the type analysis result and instruments dvi_register accord-

ingly. No changes are made for write instrumentation as HyperSpace simply instruments

all the locations where sensitive variables are modified as explained in the CPS instrumen-

tation. When sensitive variables are being used, recursive analysis backtracks to instrument

any containing variable that is loaded from a pointer. The process recursively runs to find

all load instructions in the path for the primary sensitive variable that is used.

7.4 Heap Metadata Protection

The heap memory allocator is essential in building an efficient and secure program. Ptmalloc2 [32]

is one of the most widely adopted heap allocators. Ptmalloc2 and many other heap allocators

7.4. Heap Metadata Protection 37

(e.g., dlmalloc [26] and tcmalloc [38]) adopt inline metadata design. This 32-byte meta-

data includes previous chunk size, current chunk size and flags, and forward and backward

pointers for binlist, 8-byte each. Unfortunately, this inline metadata design suffers a major

security flaw. By exploiting heap-based buffer overflow vulnerabilities, an adversary can

compromise inlined metadata to perform arbitrary code execution. Several security mecha-

nisms were proposed in an attempt to address this issue, however, they are still able to be

bypassed [27, 28, 93].

We manually instrument the ptmalloc2 source code to protect this inlined metadata for each

memory chunk. We register 32-byte metadata whenever a new memory chunk is created

(e.g., splitting one large chunk into two smaller chunks) and deregister 32-byte metadata

whenever a memory chunk is deleted (e.g., merging two small chunks into one big chunk)

using DVI APIs (dvi_register, dvi_unregister). For each malloc and free, we first check whether

inline metadata is corrupted using dvi_assert. After updating metadata, we keep the newly

written metadata to the safe region using dvi_write. This approach protects inline heap

metadata against state-of-the-art corruption attacks such as poisoned NULL byte, 1-byte

NULL overflow [28], and unsafe unlink [23] by asserting metadata during malloc and free to

detect corruption.

Chapter 8

Optimizations

In this chapter, we present various optimization techniques applied to reduce HyperSpace

overhead of automatic instrumentation pass and to reduce memory access overhead of safe

memory. Early analysis of HyperSpace showed that no single optimization significantly

improved performance across all components. Thus, we implemented six major optimization

techniques to make HyperSpace versatile and efficient compared to the current state-of-the-

art.

8.1 Inlining DVI Functions (INLN)

Due to the overhead of setting up stack frames, the function call overhead of HyperSpace

APIs could be significant. To minimize instrumentation overhead and eliminate function call

overhead, our instrumentation pass inlines HyperSpace API calls. Furthermore, we designed

HyperSpace’s API calls specifically for handling and protecting 8-byte data. This is because

most sensitive data needing protections are usually various pointer types (VTPtr, function

pointer, sensitive object pointer, etc). These 8-byte optimized APIs are inlined using LLVM’s

Link Time Optimization (LTO).

38

8.2. Excluding Objects in Safe Stack (SS) 39

8.2 Excluding Objects in Safe Stack (SS)

As discussed in Chapter 7, we use the Safestack [83] to protect return addresses and safe

objects that are address-not-taken stack objects. The Safestack isolates safe objects from

all sensitive stack objects that are on the regular stack. Hence HyperSpace does not need

to instrument any objects on the safe stack. This helps to reduce performance overhead

especially when a program frequently uses temporary stack variables that belong to sensitive

types.

8.3 Runtime Checks to Reduce Permission Changes

(RNT)

DVI does not rely on information hiding. Instead, DVI utilizes Intel MPK to control safe

memory permissions. In most cases, modifying permissions using MPK is fast. However, it

could incur significant overhead if an application requires frequent permission changes. From

our observations, reading the current MPK permissions using rdpkru is cheap (∼0.5 CPU

cycles) whereas, changing permissions using wrpkru is expensive (∼23.3 CPU cycles). With

this, the primary optimization opportunity to reduce usage of wrpkru was within dvi_write,

one of the most frequently used DVI functions. For dvi_write, we check if the target safe

memory is already in a sensitive, initialized state as well as if the value being written is

the same as its safe copy. If so, the write operation is not necessary. This prevents un-

necessary writes and MPK permission changes in many applications, where we observed

frequent updates of sensitive data with the same value (e.g., 453.povray as described in sub-

section 10.3.1). Therefore, HyperSpace will only utilize wrpkru in the first dvi_write. Any

dvi_write afterward that writes the same data value will be ignored as no update is necessary

40 Chapter 8. Optimizations

1 /** == Instrumentation of consecutive writes of sensitive data ==
2 * - LISTOP is a sensitive type containing a function pointer.
3 * Thus, its two members, op_last and op_sibling, pointing to
4 * other LISTOP instances are sensitive data. */
5 OP *Perl_append_list(pTHX_ I32 type, LISTOP *first, LISTOP *last){
6 // ...
7 first->op_last->op_sibling = last->op_first;
8 // dvi_safe_memory_unlock();
9 // dvi_write(&first->op_last->op_sibling, 8);

10 // dvi_safe_memory_lock();
11 first->op_last = last->op_last;
12 // dvi_safe_memory_unlock();
13 // dvi_write(&first->op_last, 8);
14 // dvi_safe_memory_lock();
15 first->op_flags |= (last->op_flags & OPf_KIDS);
16 FreeOp(last);
17 return (OP*)first;
18 }
19
20 /** == Coalescing permission changes in a basic block ======== */
21 OP *Perl_append_list(pTHX_ I32 type, LISTOP *first, LISTOP *last){
22 // ...
23 first->op_last->op_sibling = last->op_first;
24 // dvi_safe_memory_unlock();
25 // dvi_write(&first->op_last->op_sibling, 8);
26 first->op_last = last->op_last;
27 // dvi_write(&first->op_last, 8);
28 first->op_flags |= (last->op_flags & OPf_KIDS);
29 // dvi_safe_memory_lock();
30 FreeOp(last);
31 return (OP*)first;
32 }

Figure 8.1: An example of before (top) and after (bottom) basic block level co-
alescing optimization for permission changes in 400.perlbench to reduce runtime
overhead (Lines 24-29).

for the safe memory. Overall, this reduces the number of unnecessary wrpkru calls.

8.4 Coalescing Permission Changes within a Basic Block

(CBB)

To further optimize unnecessary toggling of safe memory region permissions, we introduce

an optimization technique to coalesce a series of HyperSpace protection instrumentation

(i.e., dvi_safe_memory_lock and dvi_safe_memory_unlock) within a basic block. Figure 8.1

8.5. Coalescing Permission Changes within a Safe Function (CFN) 41

shows an example instrumented function from 400.perlbench in SPEC CPU2006. The original

instrumentation (top), shows the modification of a sensitive object’s linked list (Lines 7

and 11), which requires a brief opening of the safe memory.

However, repetitively unlocking and locking is unnecessary if DVI API calls are consecutive

in a basic block. In this case, there is neither control flow change nor store instructions

capable of corrupting arbitrary memory locations. Therefore, it is safe to place locking

instrumentation after the very last DVI API call. To further reduce permissions change

overhead, we extend this intuition and introduce a coalescing-safe basic block, where we

can safely move locking instrumentation to immediately before a terminator instruction of

the basic block. All memory writes in a coalescing-safe basic block are guaranteed not

to be capable of corrupting arbitrary locations. More specifically, a coalescing-safe basic

block contains only store instructions whose destination memory locations point to either

the sensitive type which is protected by DVI, the non-sensitive field of a sensitive type of

which address is bounded by the sensitive type, and the safe stack. Consequently, the safe

memory region can safely remain unlocked until the end of the basic block. Looking at

the optimized instrumentation in Figure 8.1 (bottom), intermediary permission changes are

removed and a single lock function is placed at the end of its basic block (Line 29). Also, note

that we have inlined dvi_register, dvi_write and dvi_unregister to check current permissions

of the safe memory region using rdpkru. Thus, this optimization greatly reduces redundant

safety guards.

8.5 Coalescing Permission Changes within a Safe Func-

tion (CFN)

42 Chapter 8. Optimizations

As we further optimize the number of permission toggles, HyperSpace extends the basic

block coalescing optimization. The key idea is for HyperSpace protections in coalescing-safe

functions to be further coalesced at a function level instead of within a basic block. A

function is considered to be coalescing-safe if it meets three conditions: 1) all basic blocks

are coalescing-safe, 2) it does not contain any indirect calls, and 3) all direct call targets are

coalescing-safe functions. In other words, all store instructions in the function and all callee

functions are guaranteed to not write to arbitrary memory locations. Therefore, unlocking

and locking instrumentation can be safely placed at function entry and exit, respectively.

Figure 8.2 shows an example of two variations (with and without this optimization) of the

same coalescing-safe function from 400.perlbench. There are four separate basic blocks that

each instrument dvi_write for the sensitive linked list pointer value (op_next). The top shows

DVI instrumentation before this optimization where each basic block with dvi_write is also

fitted with unlocking/locking safe memory. The bottom shows the same function with the

optimization enabled, such that all unlocking/locking of safe memory in each basic block is

removed and instead a single pair of unlock and lock is placed at function entry and exit

(Lines 37,54). This allows HyperSpace to always protect the safe region around indirect calls

while avoiding unnecessary locks and unlocks around direct calls.

8.6 Optimizing Safe Memory Access (HGP)

Due to maintaining dual memory regions, HyperSpace experiences more frequent page faults

and higher TLB pressure leading to higher overhead in accessing memory. To optimize safe

memory access, we utilize huge pages provided by the OS kernel. Compared to the default

4 KB page size, the huge page configuration uses 2 MB pages for the safe memory region to

reduce the number of page faults and TLB misses making safe memory access more efficient.

8.6. Optimizing Safe Memory Access (HGP) 43

1 /** == Instrumentation of writing sensitive data ================
2 * - OP is a sensitive type containing a function pointer.
3 * Thus, its member, op_next, pointing to another OP
4 * is also sensitive data, which needs to be protected. */
5 OP * Perl_linklist(pTHX_ OP *o) {
6 register OP *kid;
7 // ...
8 if (cUNOPo->op_first) {
9 o->op_next = LINKLIST(cUNOPo->op_first);

10 // dvi_safe_memory_unlock();
11 // dvi_write(&o->op_next, 8);
12 // dvi_safe_memory_lock();
13 for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) {
14 if (kid->op_sibling) {
15 kid->op_next = LINKLIST(kid->op_sibling);
16 // dvi_safe_memory_unlock();
17 // dvi_write(&kid->op_next, 8);
18 // dvi_safe_memory_lock();
19 } else {
20 kid->op_next = o;
21 // dvi_safe_memory_unlock();
22 // dvi_write(&kid->op_next, 8);
23 // dvi_safe_memory_lock();
24 } } }
25 else {
26 o->op_next = o;
27 // dvi_safe_memory_unlock();
28 // dvi_write(&o->op_next, 8);
29 // dvi_safe_memory_lock();
30 }
31 return o->op_next;
32 }
33
34 /** == Coalescing permission changes in a safe function ======= */
35 OP * Perl_linklist(pTHX_ OP *o) {
36 register OP *kid;
37 // dvi_safe_memory_unlock();
38 // ...
39 if (cUNOPo->op_first) {
40 o->op_next = LINKLIST(cUNOPo->op_first);
41 // dvi_write(&o->op_next, 8);
42 for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) {
43 if (kid->op_sibling) {
44 kid->op_next = LINKLIST(kid->op_sibling);
45 // dvi_write(&kid->op_next, 8);
46 } else {
47 kid->op_next = o;
48 // dvi_write(&kid->op_next, 8);
49 } } }
50 else {
51 o->op_next = o;
52 // dvi_write(&o->op_next, 8);
53 }
54 // dvi_safe_memory_lock();
55 return o->op_next;
56 }

Figure 8.2: An example of before (top) and after (bottom) function level coalesc-
ing of permission changes in 400.perlbench to reduce runtime overhead (Lines 37
and 54).

Chapter 9

Implementation

Our HyperSpace prototype is built using Linux kernel 5.0.0 for the x86-64 platform. Code

instrumentation is done via module passes on LLVM 9.0.0. Table 9.1 shows the lines of code

used to implement HyperSpace each component.

The DVI Library contains and implements all DVI primitives used in automatic instrumen-

tation to secure sensitive data. This includes the APIs shown in Figure 3.1.

The kernel was modified to initialize the virtual address space of a user process of HyperSpace-

instrumented executables by splitting into regular and safe memory regions. A few variables

were altered to reposition and resize runtime components such as the stack and heap in order

to reserve memory space for the safe region. After a safe region is reserved, the segmenta-

tion register (%gs) is initialized to be used for fast access to the safe region during runtime.

To maintain compatibility with vanilla binaries, none of the kernel changes will apply for

non-instrumented executables. This allows non-instrumented executables to run as it would

in vanilla Kernel.

HyperSpace’s custom LLVM module pass is largely divided into two phases. The first phase

includes static analysis of all object types to create a look-up table for lists of sensitive el-

ements within various objects. This look-up table is used in the next phase, the automatic

instrumentation. As described in Chapter 7, instrumention phase adds DVI primitives ac-

cording to where they are needed in program code.

44

45

Module Lines of Code
Added Deleted Total

DVI Library 505 0 505
Linux Kernel 362 16 378
LLVM 2487 29 2516
ptmalloc2 902 0 902
Total 4256 45 4301

Table 9.1: Summary of lines of code for HyperSpace components.
Lastly, we manually instrumented the ptmalloc library to secure heap metadata using DVI

primitives. We instrumented malloc() and free() where heap metadata is managed for allo-

cated and freed memory chunks.

Chapter 10

Evaluation

We first evaluate how effectively HyperSpace can prevent real-world attacks by enforcing

DVI (section 10.1). Next, we evaluate the efficiency of HyperSpace applications described

in Chapter 7 using SPEC CPU 2006 and two real-world applications (section 10.2). Finally,

we analyze the impact of our optimization techniques (section 10.3) as well as the memory

overhead of HyperSpace.

All applications were run on a 24-core (48-hardware threads) server equipped with two

Intel Xeon Silver 4116 processors (2.10 GHz) and 128GB DRAM. This server is running

Fedora 28 Server Edition and Linux Kernel v5.0. All benchmarks were compiled with LLVM

Safestack [83]. Additionally, GNU gold v2.29.1-23.fc28 is used for linking to enable LLVM

LTO.

10.1 Security Experiments

We evaluated all security applications described in Chapter 7, with three real-world exploits

and six synthesized attacks.

10.1.1 Real-World Exploits

We first collected three publicly available exploits.

46

10.1. Security Experiments 47

CVE-2016-10190. This is a heap-based buffer overflow in ffmpeg, a popular multimedia

framework for encoding and decoding audio and video. This exploit allows remote web

servers to execute arbitrary code by overwriting function pointers in an AVIOContext object.

DVI-CPS/CPI successfully detects the exploit [61] and halts its execution by asserting the

corruption of a function pointer in a victim AVIOContext object.

CVE-2015-8668. This is a heap-based buffer overflow in libtiff, an image file format

library. This exploit allows remote attackers to execute arbitrary code. A malicious BMP

file causes integer overflow followed by heap overflow and overwriting a function pointer

in a TIFF structure. DVI-CPS/CPI successfully detects the exploit [25] by asserting the

corrupted function pointer before use.

CVE-2014-1912. This is a buffer overflow in python2.7 caused by a missing buffer size

check. An attacker can overwrite a function pointer in PyTypeObject via a crafted string

and can execute arbitrary code. DVI-CPS/CPI blocks the exploit [74] by detecting the

corruption of the function pointer before use.

10.1.2 Synthesized Exploits

We used synthesized exploits to demonstrate how HyperSpace can defend VTPtr hijacking in

C++ objects, COOP attacks [72]–a Turing complete attack via creating fake C++ objects–

and heap exploits.

CFIXX C++ Test Suite. We used a C++ test suite [62] released by Burow et al. [13].

It provides four VTPtr hijacking exploits (FakeVT, FakeVT-sig, VTxchg, VTxchg-hier), and

one COOP exploit. Essentially, the VTPtr hijacking exploits overwrite a VTPtr in a C++

object. In order to make the test suite more similar to real-world memory corruption based

attacks, we modified the test suite to corrupt a VTPtr using a heap-based overflow instead of

48 Chapter 10. Evaluation

directly overwriting it using memcpy. Our modification is inspired by a synthesized exploit

in OS-CFI [50]. DVI-VTPtr detects all four exploits by checking if a VTPtr is corrupted

before allowing a call to a virtual function of a given object. The COOP attack creates

a fake object without calling the class’ constructor and calls a virtual function of the fake

object. DVI-VTPtr prevents this exploit by detecting that the VTPtr of the fake object is

not initialized as a sensitive data and raises an exception, halting the program before the

virtual function call.

Heap Exploit. To evaluate heap metadata protection, we used an exploit from [23],

which overwrites inline metadata of an allocated heap memory. HyperSpace thwarts this by

detecting the inline heap metadata corruption upon free of a victim memory chunk.

10.2 Performance Evaluation

We evaluate the performance overhead of HyperSpace security mechanisms described in

Chapter 7 using SPEC CPU2006 and two real-world applications: NGINX (v1.14.2) and

PostgreSQL (REL_12_0). SPEC CPU2006 has realistic compute-intensive applications

that are ideal to see the worst-case overhead of HyperSpace. We choose SPEC CPU2006

over SPEC CPU2017 to easily compare HyperSpace with prior work. Figure 10.1 shows

performance overhead compared to the unprotected original baseline running on the original

kernel.

10.2.1 Performance Overhead of SPEC CPU2006

Heap Metadata Protection. The performance overhead for heap metadata protection

10.2. Performance Evaluation 49

0

5

10

15

20

25

30

35

40

40
0.p

erl
ben

ch

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

ea
lII

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

46
2.l

ibqu
an

tu
m

45
8.s

jen
g

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tp

p

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

Ave
rag

e-S
PEC

Med
ian

-SP
EC

NGIN
X

Post
gre

SQ
L

Ave
rag

e-A
LL

Med
ian

-A
LL

Pe
rf

or
m

an
ce

O
ve

rh
ea

d
(%

)

DVI-heap protection
DVI-CPS+VTPtr

DVI-CPI

Figure 10.1: The performance overhead of SPEC CPU2006, NGINX web server,
and PostgreSQL database server relative to an unprotected baseline build. Our
three DVI protections are: heap metadata protection, CPS code pointer and C++ VTPtr
protection, and CPI protecting all sensitive pointers. HyperSpace imposes negligible perfor-
mance overhead of 0.9% and 6.2% for DVI-CPS+VTPtr and DVI-CPI, respectively.

with DVI is 1.40% overall as Figure 10.1 shows. Three benchmarks that have more than 5%

overhead. These three benchmarks heavily call malloc and free. For example, 471.omnetpp

calls malloc and free over 534 million times combined. It continuously opens and closes files

during its setup process. Glibc internally allocates heap memory for file open and close so

it causes frequent permission changes of the safe region via MPK. In addition to omnetpp,

perlbench, dealII, and xalancbmk call malloc and free millions of times as well during their

execution, which explains this overhead. This is consistent with results in previous work [20].

DVI-CPS+VTPtr. We then evaluate CPS and C++ VTPtr protection, which together

protect all code pointers of a program by enforcing DVI. The performance overhead is neg-

ligible, 1.02%. A few benchmarks show small performance improvement (1-2%) because the

safe stack improves the locality of safe objects by moving large arrays to the regular stack.

50 Chapter 10. Evaluation

In the worst case, only two C++ benchmarks, 471.omnetpp and 483.xalancbmk, exceed 3%

overhead. In these two benchmarks, the use of virtual function calls were more frequent com-

pared to other C++ benchmarks, resulting in higher overhead from protecting the integrity

of the VTPtr.

DVI-CPI. In addition to CPS, CPI overhead includes instrumentation for recursive sen-

sitive types. HyperSpace’s CPI protection performs very well with an average overhead of

6.35%. Two benchmarks, 400.perlbench and 453.povray are exceptions where both exceeds

20%. 400.perlbench accumulates overhead from frequently utilizing sensitive global variables

that contain function pointers. For example, a perlbench function, Perl_runops_standard,

contains a while loop, where the loop condition contains sensitive indirect call, followed by the

return variable being assigned to a sensitive global variable. This causes repetitive permission

changes of the safe memory region and collects undesirable, but unavoidable overhead. As for

453.povray, most overheads are from assertions of function pointer in struct Method_Struct.

This struct mimics C++’s virtual function table by containing a series of function point-

ers. Other 453.povray objects use this struct to call function pointers abundantly throughout

the runtime. HyperSpace protection recursively extends to pointers of objects that contain

struct Method_Struct. These chains of pointers require DVI instrumentation throughout the

benchmark resulting in unusual overhead. Recent works, ERIM [87] and IMIX [31], also

attempted to utilize MPK for protecting the metadata store of CPI. However, due to lack

of proper optimization techniques, they incur significant runtime overhead than DVI-CPI:

maximum overhead is 3.2× for ERIM and 28.5× for IMIX, respectively. Moreover, they

do not reveal their runtime overhead for 400.perlbench and 453.povray, which are most likely

their two highest overhead similar to DVI-CPI.

Summary. The performance overhead of HyperSpace for SPEC CPU2006 is negligible:

1.02% for CPS protection and 6.35% for CPI protection, while the worst-case overhead being

10.2. Performance Evaluation 51

38.3%. In comparison, current state-of-the-art defense techniques Code-Pointer Integrity [53]

and µCFI [44], have an average overhead of 8.4% and 7.88% with worst-case overhead of

44% and 49%, respectively. Techniques such as Code-Pointer Integrity require hash table

lookup to access metadata for sensitive pointers whereas HyperSpace utilizes a single bit test

instruction, btq, using %gs register segmentation. Thus, HyperSpace proves to have better

and broader security guarantees while incurring less performance overhead.

10.2.2 Performance Overhead of Real-World Applications

NGINX and PostgreSQL are two widely used web and database servers, respectively. We

used the default NGINX configuration, accommodating a max of 1024 connections per pro-

cessor. Benchmarking is done over a network using a server on the same network switch.

Similarly, the default configuration for PostgreSQL was also used with a max of 100 connec-

tions and SSL connections disabled.

NGINX. We evaluate the performance of NGINX using an HTTP benchmarking tool

wrk [35]. wrk spawns threads that send requests for a 6745-byte static HTML and measures

the latency and request throughput (req/sec). We ran wrk with 24 threads with each thread

handling 50 HTTP connections. The performance overhead is negligible: heap metadata,

CPS and CPI protections impose 1.38%, 0.44% and 1.05% of overhead, respectively.

PostgreSQL. To evaluate the performance of PostgreSQL, we used pgbench [85], which

repetitively runs concurrent database sessions that handle a sequence of SQL commands to

measure the average transaction rate and latency. We tested PostgreSQL with 24 concurrent

database clients. PostgreSQL shows negligible performance impact of 1.30%, 1.96% and

2.04% for heap metadata, CPS, and CPI protections respectively.

52 Chapter 10. Evaluation

10.3 Performance Analysis

We first analyze the impact of our optimization techniques then provide a detailed analysis

on memory consumption.

10.3.1 Impact of Performance Optimization

In order to measure the impact of each optimization technique, we turned off one optimization

at a time in a fully optimized DVI-CPI. Figure 10.2 shows the impact of each technique for

SPEC CPU2006.

+ INLN. Inlining DVI API calls improves performance by 13.7% on average. In particular,

433.milc benefits the most with 60.6% performance improvement due to the frequent use of

sensitive stack objects, which need a series of DVI calls.

+ SS. Leveraging SafeStack, HyperSpace does not need to instrument safestack objects.

This improves performance by 8.5% on average. The sensitive local variables that are not

address-taken safely reside in safestack, separated from the regular stack with variables

such as arrays and other address-taken variables that if exploited, could jeopardize the

integrity of other variables in the regular stack. SafeStack significantly reduces the number

of variables that need to be protected to only those that are in the regular stack. In general,

C benchmarks such as 429.mcf (28.4%) and 433.milc (53.5%) benefit from this optimization

more than C++ benchmarks since C++ objects are address-taken due to C++ semantics

such as constructors, thus do not get included in the safestack.

+ RNT. HyperSpace reduces costly wrpkru instructions by eliminating unnecessary, repeti-

tive modifications of the safe memory region. If an object has already been registered and its

value is the same, HyperSpace skips unnecessary, repetitive dvi_register and dvi_write calls

10.3. Performance Analysis 53

0

20

40

60

80

100

120

40
0.p

erl
ben

ch

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

ea
lII

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

46
2.l

ibqu
an

tu
m

45
8.s

jen
g

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tp

p

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

Ave
rag

e-S
PEC

Pe
rf

or
m

an
ce

im
pr

ov
em

en
t

(%
)

INLN SS RNT CBB CFN HGP

Figure 10.2: Impact of the performance optimization techniques described in
Chapter 8. (INLN: inlining DVI APIs; SS: safe stack; RNT: runtime permission check;
CBB: basic block-level coalescing; CFN: function-level coalescing; HGP: huge page).

to reduce the amount of MPK permission changes. This optimization improves performance

by 6.6% on average. In particular, it improves the performance of 453.povray by 75%.

+ CBB. Coalescing permission changes within a basic block improves performance 2.17%

on average by minimizing the number of permission changes using wrpkru instructions for the

safe memory region. 453.povray is one of the most impacted benchmarks with an improvement

of 9.8% for having an abundant number of sensitive object pointers that are often updated.

+ CFN. Extending coalescing to function scope improves performance 1.4% on average.

464.h264ref, 458.sjeng, and 400.perlbench have higher performance gain of 7.2%, 6.8%, and

3.5%, respectively, due to having commonly used functions such as Perl_linklist recognized

as a safe function.

+ HGP. Last but not least, using huge pages for the safe memory region improves per-

54 Chapter 10. Evaluation

formance 4.5% on average by reducing the number of page faults and TLB misses. This

optimization is effective in the case where sensitive objects are sparsely scattered by access-

ing larger portions of the safe memory region. In particular, the performance of 456.hmmer

improves 63.4% with this change.

10.3.2 Analysis on Memory Consumption

Having a parallel safe region could incur high memory overhead if implemented naively.

However, the safe region is an anonymous region that only allocates a physical page if a

process writes to the corresponding page in the safe region. Also, its metadata is compact,

requiring 2 bits for every 64 bits. We measured the maximum resident set size (RSS) dur-

ing programming execution. As Figure 10.3 shows, DVI introduces around 15% memory

overhead: 14.4% for DVI-CPS+VTPtr and 15.5% for DVI-CPI, respectively. DVI’s mem-

ory overhead is much smaller than other state-of-the-art defense mechanisms: 105% for the

original CPI [53], 50% for DFI [15], and 36% for BOGO [97]. The reason for such memory

overhead for state-of-the-art such as CPI is due to having bigger metadata for each sensi-

tive pointers. For CPI, the metadata for each sensitive pointer includes value, upper/lower

bounds, and temporal id of the sensitive pointer which require more memory than 2 bits

required by HyperSpace.

10.3. Performance Analysis 55

0

10

20

30

40

50

60

70

80

90

40
0.p

erl
ben

ch

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

ea
lII

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

46
2.l

ibqu
an

tu
m

45
8.s

jen
g

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tp

p

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

Ave
rag

e-S
PEC

Med
ian

-SP
EC

M
em

or
y

ov
er

he
ad

(%
)

DVI-CPS+VTPtr

DVI-CPI

Figure 10.3: Memory overhead of DVI-CPS+VTPtr and DVI-CPI on SPEC
CPU2006. HyperSpace imposes marginal overhead: average and median overhead of DVI-
CPI is 15.5% and 5.9%, respectively.

Chapter 11

Discussion & Future Work

Protecting Adversarial Misuse of MPK. Because HyperSpace relies on MPK to protect

the safe region, a hypothetical attack that misuses MPK could be possible: if an attacker

changes the safe region read-write permissions, by somehow bending a program’s control flow,

this compromises both regular and safe memory via bypassing value integrity checks. How-

ever, such an attack is impossible if a program’s control flow is protected by DVI-CPS/CPI

protection. In the case that DVI’s control flow protection is not deployed (e.g., a program

only adopts DVI’s VTPtr or heap metadata protection), such an attack could be possible.

To eliminate such an attack vector, a program can additionally adopt recently proposed

orthogonal defense techniques [41, 87]; ERIM [87] and Hodor [41] are intra-process protec-

tion mechanisms using MPK. ERIM uses static binary rewriting to eliminate unintended

MPK permission change instructions. Similarly, Hodor monitors usage of such unintended

instructions at runtime using hardware watchpoints. For a program’s intended use of MPK,

they monitor a C library function, pkey_set. HyperSpace can be extended to adopt such

techniques to prevent unintended use of MPK permission change instructions.

Alternative Implementation of HyperSpace. The essence of DVI is enforcing value

integrity for a given address. HyperSpace is one implementation using MPK and Intel

x86 segmentation. In the future, we plan to leverage upcoming hardware features: Intel

EPT-based Sub-Page Permissions (SPP) [45, 92] and ARM Pointer Authentication (PA) [4].

DVI can be adopted to use SPP hardware to enforce read-only permissions of sensitive

56

57

data during value invariant periods. We believe that SPP-based DVI would eliminate the

overhead of dvi_assert. Moreover, we believe pointer authentication can be re-purposed

to cryptographically enforce value integrity. Using the value as a modifier for a message

authentication code (MAC) for sensitive pointers, we believe that PA-based DVI would

eliminate additional memory overhead of HyperSpace.

Instrumentation of Security-Sensitive Non-control Data. The foundation of DVI is

to correctly identify security-sensitive data along with its value invariant phases. Automatic

analysis and instrumentation of control-data using CPS/CPI is well studied. However, such

analysis and instrumentation of non-control data have been studied only in a limited context

(e.g., security checks in the Linux kernel [79]). We plan to further explore automatic analysis

and instrumentation of sensitive non-control data, thereby, a wider range of DVI-based

defenses can be automatically applied.

Chapter 12

Conclusion

We proposed Data-Value Integrity (DVI), a new defense policy that enforces the integrity

of ”data values” for sensitive C/C++ data. Its key focus is to protect against attacks

that corrupt both control and non-control data while having low performance and memory

overhead. We then introduced HyperSpace, a prototype that enforces DVI to four security

mechanisms that offer diverse policy constraints. Our evaluation of HyperSpace shows the

versatility, and efficiency of DVI. HyperSpace incurs an average performance overhead of

1.02% and 6.35% for CPS+VTPtr and CPI, respectively, while incurring only 15% memory

overhead for SPEC benchmarks and real-world applications. Additionally, we conducted

security experiments using three real-world exploits and six synthesized attacks to show the

effectiveness of DVI.

58

Bibliography

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.

In Proceedings of the 12th ACM Conference on Computer and Communications Security

(CCS), Alexandria, VA, November 2005.

[2] One Aleph. Smashing the stack for fun and profit. http://www. shmoo.

com/phrack/Phrack49/p49-14, 1996.

[3] Autore Anonimo. Once upon a free ().. Phrack Magazine, 11(57), 2001.

[4] ARM Limited. ARM Architecture Reference Manual: ARMv8, for ARMv8-A archi-

tecture profile, 2017. https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_

arm.pdf.

[5] Michael Backes and Stefan Nürnberger. Oxymoron: Making Fine-Grained Memory

Randomization Practical by Allowing Code Sharing. In Proceedings of the 23rd USENIX

Security Symposium (Security), San Diego, CA, August 2014.

[6] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Memory Safety for

Unsafe Languages. In Proceedings of the 2006 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), Ottawa, Canada, June 2006.

[7] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. Address obfuscation: An efficient

approach to combat a broad range of memory error exploits. In USENIX Security

Symposium, volume 12, pages 291–301, 2003.

[8] Sandeep Bhatkar, Daniel C DuVarney, and R Sekar. Efficient techniques for compre-

59

60 BIBLIOGRAPHY

hensive protection from memory error exploits. In USENIX Security Symposium, pages

17–17, 2005.

[9] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi.

Timely Rerandomization for Mitigating Memory Disclosures. In Proceedings of the 22nd

ACM Conference on Computer and Communications Security (CCS), Denver, Colorado,

October 2015.

[10] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. Hacking

blind. In Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland),

San Jose, CA, May 2014.

[11] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-Oriented

Programming: A New Class of Code-Reuse Attack. In Proceedings of the 6th ACM

Symposium on Information, Computer and Communications Security (ASIACCS), page

30–40, Hong Kong, China, March 2011.

[12] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brun-

thaler, and Mathias Payer. Control-flow integrity: Precision, security, and performance.

ACM Computing Surveys (CSUR), 50(1):16, 2017.

[13] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. CFIXX: Object

Type Integrity for C++ Virtual Dispatch. In Proceedings of the 2018 Annual Network

and Distributed System Security Symposium (NDSS), San Diego, CA, February 2018.

[14] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R Gross.

Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. In Proceedings

of the 24th USENIX Security Symposium (Security), Washington, DC, August 2015.

BIBLIOGRAPHY 61

[15] Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by Enforcing Data-

flow Integrity. In Proceedings of the 7th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 147–160, Seattle, WA, November 2006.

[16] Xi Chen, Herbert Bos, and Cristiano Giuffrida. CodeArmor: Virtualizing The Code

Space to Counter Disclosure Attacks. In Proceedings of the 2nd IEEE European Sym-

posium on Security and Privacy (Euro S&P), Paris, France, April 2017.

[17] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H Deng. Ropecker:

A generic and practical approach for defending against rop attack. In Proceedings of the

2014 Annual Network and Distributed System Security Symposium (NDSS), San Diego,

CA, February 2014.

[18] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic

Adaptive Detection and Prevention of Buffer-overflow Attacks. In Proceedings of the

7th USENIX Security Symposium (Security), San Antonio, TX, January 1998.

[19] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical

Code Randomization Resilient to Memory Disclosure. In Proceedings of the 36th IEEE

Symposium on Security and Privacy (Oakland), San Jose, CA, May 2015.

[20] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar: A Practical Page-

Permissions-Based Scheme for Thwarting Dangling Pointers. In Proceedings of the 26th

USENIX Security Symposium (Security), Vancouver, BC, Canada, August 2017.

[21] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching

the gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection.

62 BIBLIOGRAPHY

In Proceedings of the 23rd USENIX Security Symposium (Security), San Diego, CA,

August 2014.

[22] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian

Monrose. Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented

Programming. In Proceedings of the 2015 Annual Network and Distributed System

Security Symposium (NDSS), San Diego, CA, February 2015.

[23] Dhaval Kapil. Unlink Exploit, 2019. https://heap-exploitation.dhavalkapil.com/

attacks/unlink_exploit.html.

[24] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke Lee.

Efficient protection of path-sensitive control security. In Proceedings of the 26th USENIX

Security Symposium (Security), pages 131–148, Vancouver, BC, Canada, August 2017.

[25] Dongliang Mu. CVE-2015-8668, 2018. cve-2015-8668-exploit.

[26] Doug Lea. A Memory Allocator, 2000. http://gee.cs.oswego.edu/dl/html/malloc.html.

[27] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher

Kruegel, and Giovanni Vigna. HeapHopper: Brining Bounded Model Checking to Heap

Implementation Security. In Proceedings of the 27th USENIX Security Symposium

(Security), Baltimore, MD, August 2018.

[28] Chris Evans. The poisoned NUL byte, 2014 edition, 2014. https://googleprojectzero.

blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html.

[29] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,

Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Miss-

ing the point (er): On the effectiveness of code pointer integrity. In Proceedings of the

36th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May 2015.

BIBLIOGRAPHY 63

[30] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed

Okhravi, and Stelios Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses of Fine-

Grained Control Flow Integrity. In Proceedings of the 22nd ACM Conference on Com-

puter and Communications Security (CCS), page 901–913, Denver, Colorado, October

2015.

[31] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi.

Imix: in-process memory isolation extension. In Proceedings of the 27th USENIX Con-

ference on Security Symposium, pages 83–97. USENIX Association, 2018.

[32] Free Software Foundation. MallocInternals - glibc wiki, 2019. https://sourceware.org/

glibc/wiki/MallocInternals.

[33] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Sales-

sawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris, Zhixing Xu, Baris Kasikci,

Valeria Bertacco, Sharad Malik, Mohit Tiwari, and Todd Austin. Morpheus: A

Vulnerability-Tolerant Secure Architecture Based on Ensembles of Moving Target De-

fenses with Churn. In Proceedings of the 24th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), pages

469–484, Providence, RI, April 2019.

[34] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control flows using

intel processor trace. In Proceedings of the 22nd ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS),

Xi’an, China, April 2017.

[35] Will Glozer. a HTTP benchmarking tool, 2019. https://github.com/wg/wrk.

[36] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out of

64 BIBLIOGRAPHY

control: Overcoming control-flow integrity. In Proceedings of the 35th IEEE Symposium

on Security and Privacy (Oakland), San Jose, CA, May 2014.

[37] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Georgios Por-

tokalidis, Cristiano Giuffrida, and Herbert Bos. Undermining Information Hiding (and

What to Do about It). In Proceedings of the 25th USENIX Security Symposium (Secu-

rity), Austin, TX, August 2016.

[38] Google. TCMalloc. https://google.github.io/tcmalloc/.

[39] Jens Grossklags and Claudia Eckert. τCFI: Type-Assisted Control Flow Integrity for

x86-64 Binaries. In Proceedings of the 21th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID), Heraklion, Crete, Greece, September 2018.

[40] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. Pt-cfi: Transparent

backward-edge control flow violation detection using intel processor trace. In Proceedings

of the 7th ACM Conference on Data and Application Security and Privacy (CODASPY),

Scottsdale, AZ, March 2017.

[41] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L

Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process Isolation for High-Throughput

Data Plane Libraries. In Proceedings of the 2019 USENIX Annual Technical Conference

(ATC), Renton, WA, July 2019.

[42] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W Davidson.

ILR: Where’d My Gadgets Go? In Proceedings of the 33rd IEEE Symposium on Security

and Privacy (Oakland), San Francisco, CA, May 2012.

[43] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and

Zhenkai Liang. Data-oriented programming: On the expressiveness of non-control data

BIBLIOGRAPHY 65

attacks. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 969–986. IEEE,

2016.

[44] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R. Harris,

Taesoo Kim, and Wenke Lee. Enforcing Unique Code Target Property for Control-Flow

Integrity. In Proceedings of the 25th ACM Conference on Computer and Communications

Security (CCS), Toronto, ON, Canada, October 2018.

[45] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2019.

https://software.intel.com/en-us/articles/intel-sdm.

[46] Christopher Jelesnianski, Jinwoo Yom, Changwoo Min, and Yeongjin Jang. Making

Code Re-randomization Practical with MARDU, 2019.

[47] Jonathan Corbet. x86 NX support, 2004. https://lwn.net/Articles/87814/.

[48] Michel Kaempf. Vudo malloc tricks. phrack magazine, 57 (8), august 2001.

[49] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin Zhou, and Yueqiang

Cheng. Adaptive call-site sensitive control flow integrity. In 2019 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 95–110. IEEE, 2019.

[50] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang.

Origin-sensitive Control Flow Integrity. In Proceedings of the 28th USENIX Security

Symposium (Security), Santa Clara, CA, August 2019.

[51] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopoulos. No

Need to Hide: Protecting Safe Regions on Commodity Hardware. In Proceedings of the

12th European Conference on Computer Systems (EuroSys), page 437–452, Belgrade,

Serbia, April 2017.

66 BIBLIOGRAPHY

[52] Hyungjoon Koo and Michalis Polychronakis. Juggling the gadgets: Binary-level code

randomization using instruction displacement. In Proceedings of the 11th ACM Sym-

posium on Information, Computer and Communications Security (ASIACCS), Xi’an,

China, May–June 2016.

[53] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and

Dawn Song. Code-Pointer Integrity. In Proceedings of the 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), Broomfield, Colorado, October

2014.

[54] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.

Transparent and efficient CFI enforcement with intel processor trace. In Proceedings

of the 23rd IEEE Symposium on High Performance Computer Architecture (HPCA),

Austin, TX, February 2017.

[55] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. How to Make ASLR

Win the Clone Wars: Runtime Re-Randomization. In Proceedings of the 2016 Annual

Network and Distributed System Security Symposium (NDSS), San Diego, CA, February

2016.

[56] Microsoft. Microsoft Docs: /GS (Buffer Security Check), 2019. https://docs.microsoft.

com/en-us/cpp/build/reference/gs-buffer-security-check?view=vs-2019.

[57] Microsoft Support. A detailed description of the Data Execution Prevention (DEP)

feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005,

and Windows Server 2003, 2017. https://support.microsoft.com/en-us/help/875352/

a-detailed-description-of-the-data-execution-prevention-dep-feature-in.

[58] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Soft-

Bound: Highly Compatible and Complete Spatial Memory Safety for C. In Proceedings

BIBLIOGRAPHY 67

of the 2009 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), Dublin, Ireland, June 2009.

[59] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. CETS:

Compiler Enforced Temporal Safety for C. In Proceedings of the 2010 International

Symposium on Memory Management (ISMM), Toronto, Canada, June 2010.

[60] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Everything you want

to know about pointer-based checking. In 1st Summit on Advances in Programming

Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[61] Nandy Narwhals CTF Team. CVE-2016-10190 Detailed Writeup, 2017. https://

nandynarwhals.org/cve-2016-10190/.

[62] Nathan Burow. CFIXX C++ test suite, 2018. https://github.com/HexHive/CFIXX/

tree/master/CFIXX-Suite.

[63] Ben Niu and Gang Tan. Modular control-flow integrity. In Proceedings of the 2014 ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

Edinburgh, UK, June 2014.

[64] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceedings of the 22nd

ACM Conference on Computer and Communications Security (CCS), Denver, Colorado,

October 2015.

[65] Gene Novark and Emery D. Berger. DieHarder: Securing the Heap. In Proceedings

of the 17th ACM Conference on Computer and Communications Security (CCS), page

573–584, Chicago, IL, October 2010.

[66] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano Giuffrida.

68 BIBLIOGRAPHY

Poking holes in information hiding. In Proceedings of the 25th USENIX Security Sym-

posium (Security), Austin, TX, August 2016.

[67] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack.

Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2018.

[68] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the gad-

gets: Hindering return-oriented programming using in-place code randomization. In

Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland), San

Francisco, CA, May 2012.

[69] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Transparent ROP

Exploit Mitigation Using Indirect Branch Tracing. In Proceedings of the 22th USENIX

Security Symposium (Security), Washington, DC, August 2013.

[70] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. Libmpk: Software

Abstraction for Intel Memory Protection Keys (Intel MPK). In Proceedings of the 2019

USENIX Annual Technical Conference (ATC), pages 241–254, Renton, WA, July 2019.

[71] Aravind Prakash, Xunchao Hu, and Heng Yin. vfGuard: Strict Protection for Virtual

Function Calls in COTS C++ Binaries. In Proceedings of the 2015 Annual Network and

Distributed System Security Symposium (NDSS), San Diego, CA, February 2015.

[72] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. Counterfeit Object-oriented Programming: On the Dif-

ficulty of Preventing Code Reuse Attacks in C++ Applications. In Proceedings of the

36th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May 2015.

[73] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.

BIBLIOGRAPHY 69

AddressSanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX

Annual Technical Conference (ATC), pages 309–318, Boston, MA, June 2012.

[74] @sha0coder. Python - ’socket.recvfrom_into()’ Remote Buffer Overflow, 2014. URL

https://www.exploit-db.com/exploits/31875.

[75] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer

and Communications Security (CCS), Alexandria, VA, October–November 2007.

[76] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu. Free-

Guard: A Faster Secure Heap Allocator. In Proceedings of the 24th ACM Conference

on Computer and Communications Security (CCS), Dallas, TX, October–November

2017.

[77] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. Guarder: A

Tunable Secure Allocator. In Proceedings of the 27th USENIX Security Symposium

(Security), Baltimore, MD, August 2018.

[78] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. Just-in-time Code Reuse: On the Effectiveness of

Fine-grained Address Space Layout Randomization. In Proceedings of the 34th IEEE

Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2013.

[79] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, and Wenke

Lee. Enforcing Kernel Security Invariants with Data Flow Integrity. In Proceedings of

the 2016 Annual Network and Distributed System Security Symposium (NDSS), San

Diego, CA, February 2016.

[80] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo

70 BIBLIOGRAPHY

Kim, Wenke Lee, and Yunheung Pack. HDFI: Hardware-Assisted Data-flow Isolation.

In Proceedings of the 37th IEEE Symposium on Security and Privacy (Oakland), San

Jose, CA, May 2016.

[81] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Heisenbyte: Thwarting

memory disclosure attacks using destructive code reads. In Proceedings of the 22nd

ACM Conference on Computer and Communications Security (CCS), Denver, Colorado,

October 2015.

[82] The Clang Team. Clang 10 documentation: CONTROL FLOW INTEGRITY, 2019.

https://clang.llvm.org/docs/ControlFlowIntegrity.html.

[83] The Clang Team. Clang 10 documentation: SAFESTACK, 2019. https://clang.llvm.

org/docs/SafeStack.html.

[84] The PAX Team. Address Space Layout Randomization, 2003. https://pax.grsecurity.

net/docs/aslr.txt.

[85] The PostgreSQL Global Development Group. pgbench: PostgreSQL Client Applications

, 2020. https://www.postgresql.org/docs/current/pgbench.html.

[86] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson,

Luis Lozano, and Geoff Pike. Enforcing Forward-Edge Control-Flow Integrity in GCC

& LLVM. In Proceedings of the 23rd USENIX Security Symposium (Security), San

Diego, CA, August 2014.

[87] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter

Druschel, and Deepak Garg. ERIM: Secure, Efficient In-process Isolation with Protec-

tion Keys (MPK). In Proceedings of the 28th USENIX Security Symposium (Security),

pages 1221–1238, Santa Clara, CA, August 2019.

BIBLIOGRAPHY 71

[88] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc, Asia

Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical context-sensitive CFI. In

Proceedings of the 22nd ACM Conference on Computer and Communications Security

(CCS), Denver, Colorado, October 2015.

[89] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen, Sanjay

Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano Giuffrida. A

tough call: Mitigating advanced code-reuse attacks at the binary level. In Proceedings

of the 37th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May

2016.

[90] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang, Wei-Chung Hsu,

and Yueqiang Cheng. Reranz: A Light-weight Virtual Machine to Mitigate Memory

Disclosure Attacks. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, Xi’an, China, April 2017.

[91] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xinhao

Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang, and William

Aiello. Shuffler: Fast and Deployable Continuous Code Re-Randomization. In Proceed-

ings of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Savannah, GA, November 2016.

[92] Zhang Yi. Intel EPT-Based Sub-page Write Protection Support, 2017. https://lwn.

net/Articles/736322/.

[93] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic Techniques to Systematically

Discover New Heap Exploitation Primitives. In Proceedings of the 29th USENIX Security

Symposium (Security), Boston, MA, August 2020.

72 BIBLIOGRAPHY

[94] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant,

Dawn Song, and Wei Zou. Practical control flow integrity and randomization for binary

executables. In Proceedings of the 34th IEEE Symposium on Security and Privacy

(Oakland), San Francisco, CA, May 2013.

[95] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song.

VTint: Protecting Virtual Function Tables’ Integrity. In Proceedings of the 2015 An-

nual Network and Distributed System Security Symposium (NDSS), San Diego, CA,

February 2015.

[96] Mingwei Zhang and R Sekar. Control Flow Integrity for COTS Binaries. In Proceedings

of the 22th USENIX Security Symposium (Security), Washington, DC, August 2013.

[97] Tong Zhang, Dongyoon Lee, and Changhee Jung. BOGO: Buy Spatial Memory Safety,

Get Temporal Memory Safety (Almost) Free. In Proceedings of the 24th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), page 631–644, Providence, RI, April 2019.

